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Preface 

This is a revised and much enlarged edition of Introduction to Mathematical 

Logic, Part I, which was published in 1944 as one of the Annals of Mathe¬ 

matics Studies. In spite of extensive additions, it remains an introduction 

rather than a comprehensive treatise. It is intended to be used as a textbook 

by students of mathematics, and also within limitations as a reference work. 

As a textbook it offers a beginning course in mathematical logic, but 

presupposes some substantial mathematical background. 
An added feature in the new edition is the inclusion of many exercises 

for the student. Some of these are of elementary character, straightforward 

illustrations serving the purpose of practice; others are in effect brief sket¬ 

ches of difficult developments to which whole sections of the main text might 

have been devoted; and still others occupy various intermediate positions 

between these extremes. No attempt has been made to classify exercises 
systematically according to difficulty. But for routine use by beginning 

students the following list is tentatively suggested as a basis for selection: 

12.&-12.9, 14.0-14.8, 15.0-15,3, 15.9, 15.10. 18.0-18.3, 19.0-19.7, 19.9, 
19.10, 23.1-23.6, 24.0-24.5, 30.0-30.4 (with assistance if necessary), 34.0, 

34.3-34.6, 35.1, 35.2, 38.0-38.5, 39.0, 41.0, 43.0, 43.1, 43.4, 45.0, 45.1, 

48.0-48.11, 52.0, 52.1, 54.2-54.6, 55.1, 55.2, 55.22, 66.0-56.2, 57.0-57.2. 

The book has been cut off rather abruptly in the middle, in order that 

Volume I may be published, and at many places there are references forward 

to passages in the still unwritten Volume II. In order to make clear at least 

the general intent of such references, a tentative table of contents of Volume 
II has been added at the end of the table of contents of the present volume, 

and references to Volume II should be understood in the light of this. 

Volume I has been written over a period of years, beginning in 1947, 

and as portions of the work were completed they were made available in 
manuscript form in the Fine Hall Library of Princeton University. The work 

was carried on during regular leave of absence from Princeton University 

from September, 1947, to February 1, 1948, and then under a contract of 

Princeton University with the United States Office of Naval Research from 

February 1 to June 30.1948. To this period should be credited the Introduc¬ 
tion and Chapters I and II — although some minor changes have been made 



VI PREFACE 

in this material since then, including the addition of exercises 15.4, 18.3, 

19.12, 24.10, 26.3(2), 26.3(3), 26.8, 29.2, 29.3, 29.4, 29.5, as well as changes 

designed to correct errors or to take into account newly published papers. 

The remainder of the work was done during 1948-1951 with the aid of 

grants from the Scientific Research Fund of Princeton University and the 

Eugene Higgins Trust Fund, and credit is due to these Funds for making 

possible the writing of the latter half of the volume. 

For individual assistance, I am indebted still to the persons named in 

the Preface of the edition of 1944, especially to C. A. Truesdell — whose 

notes on the lectures of 1943 have continued to be of great value, both in the 

writing of Volume I and in the preliminary work which has been done towards 

the writing of Volume II, and notwithstanding the extensive changes which 

have been made from the content and plan of the original lectures. I am 

also indebted to many who have read the new manuscript or parts of it and 

have supplied valuable suggestions and corrections, including especially 

E. Adler, A. F. Bausch, W. W. Boone, Leon Henkin, J. G. Kemeny, Maurice 

L’Abbe, E. A. Maier, Paul Meier, I. L. Novak, and Rulon Wells. 

Alonzo Church 

Princeton,, New Jersey 

August 31, 1951 

[Added November 28, 1955.) For suggestions which could be taken into 

account only in the proof I am indebted further to A. N. Prior, T. T. Robin¬ 

son, Hartley Rogers, Jr., J. C. Shepherdson, F. 0. Wyse, and G. Zubieta 

Russi; for assistance in the reading of the proof itself, to Michael Rabin and 

to Zubieta; and especially for their important contribution in preparing the 

indexes, to Robinson and Zubieta. 

[Added January 17, 1958.) In the second printing, additional corrections 

which were necessary have been made in the text as far as possible, and those 

which could not be fitted into the text have been included in a list of Errata 

at the end of the book. For some of these corrections I am indebted to Max 

Black, S. C. Kleene, E. J. Lemmon, Walter Stuermann, John van Heijenoort; 

for the observation that exercise 55.3(3) would be better placed as 55.2(3), 

to D. S. Geiger; and for important corrections to 38.8(10) and footnote 550, 

to E. W. Beth. For assistance in connection with Wajsberg’s paper (see the 

correction to page 142) I am further indebted to T. T. Robinson. 

Alonzo Church 
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Introduction 

This introduction contains a number of preliminary explanations, which 

it seems are most suitably placed at the beginning, though many will be¬ 

come clearer in the light of the formal development which follows. The 

reader to whom the subject is new is advised to read the introduction through 

once, then return to it later after a study of the first few chapters of the book. 

Footnotes may in general be omitted on a first reading. 

00. Logic. Our subject is logic—ox, as we may say more fully, in order 

to distinguish from certain topics and doctrines which have (unfortunately) 

been called by the same name, it is formal logic. 

Traditionally, (formal) logic is concerned with the analysis of sentences 

or of propositions1 and of proof2 with attention to the form in abstraction 

from the matter. This distinction between form and matter is not easy to 

make precise immediately, but it may be illustrated by examples. 

To take a relatively simple argument for illustrative purposes, consider 

the following: 

I Brothers have the same surname; Richard and Stanley are brothers; 

Stanley has surname Thompson; therefore Richard has surname 

Thompson. 

Everyday statement of this argument would no doubt leave the first of the 

three premisses3 tacit, at least unless the reasoning were challenged; but 

‘See §04. 
*In the light both of recent work and of some aspects of traditional logic we must 

add here, besides proof, such other relationships among sentences or propositions as 
can be treated in the same manner, i.e., with regard to form in abstraction from the 
matter. These include (e.g.) disproof, compatibility; also partial confirmation, which 
is important in connection with inductive reasoning (cf. C. G. Hempel in The Journal 
of Symbolic Logic, vol. 8 (1943). pp. 122—143). 

But no doubt these relationships both can and should be reduced to that of proof, 
by making suitable additions to the object language (§07) if necessary. E.g., in reference 
to an appropriate formalized language as object language, disproof of a proposition or 
sentence may be identified with proof of its negation. The corresponding reduction of 
the notions of compatibility and confirmation to that of proof apparently requires 
modal logic—a subject which, though it belongs to formal logic, is beyond the scope 
of this book. 

•Following C. S. Peirce (and others) we adopt the spelling premiss (or the logical 
term to distinguish it from premise in other senses, in particular to distinguish the 
plural from the legal term premises. 
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for purposes of logical analysis all premisses must be set down explicitly. 

The argument, it may be held, is valid from its form alone, independently 

of the matter, and independently in particular of the question whether the 

premisses and the conclusion are in themselves right or wrong. The reasoning 

may be right though the facts be wrong, and it is just in maintaining this 

distinction that we separate the form from the matter. 

For comparison with the foregoing example consider also: 

II Complex numbers with real positive ratio have the same amplitude; 

* N'3/3 and oj are complex numbers with real positive ratio; co has 

amplitude 2tz/3] therefore * - V3/3 has amplitude 2n/3. 

This may be held to have the same form as I, though the matter is different, 

and therefore to be, like I, valid from the form alone. 

Verbal similarity in the statements of I and II, arranged at some slight 

cost of naturalness in phraseology, serves to highlight the sameness of 

form. But, at least in the natural languages, such linguistic parallelism 

is not in general a safe guide to sameness of logical form. Indeed, the 

natural languages, including English, have been evolved over a long 

period of history to serve practical purposes of facility of communication, 

and these are not always compatible with soundness and precision of 

logical analysis. 

To illustrate this last point, let us take two further examples: 

III I have seen a portrait of John Wilkes Booth; John Wilkes Booth 

assassinated Abraham Lincoln; thus I have seen a portrait of an 

assassin of Abraham Lincoln. 

IV I have seen a portrait of somebody; somebody invented the wheeled 

vehicle; thus I have seen a portrait of an inventor of the wheeled 

vehicle. 

The argument III will be recognized as valid, and presumably from the 

logical form alone, but IV as invalid. The superficial linguistic analogy of 

the two arguments as stated is deceptive. In this case the deception is quickly 

dispelled upon going beyond the appearance of the language to consider the 

meaning, but other instances are more subtle, and more likely to generate 

real misunderstanding. Because of this, it is desirable or practically necessary 

for purposes of logic to employ a specially devised language, a formalized 

language as we shall call it, which shall reverse the tendency of the natural 

languages and shall follow or reproduce the logical form—at the expense, 
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where necessary, of brevity and facility of communication. To adopt a 

particular formalized language thus involves adopting a particular theory 

or system of logical analysis. (This must be regarded as the essential feature 

of a formalized language, not the more conspicuous but theoretically less 

important feature that it is found convenient to replace the spelled words 

of most (written) natural languages by single letters and various special 

symbols.) 

01. Names. One kind of expression which is familiar in the natural 

languages, and which we shall carry over also to formalized languages, is the 

proper name. Under this head we include not only proper names which are 

arbitrarily assigned to denote in a certain way—such names, e.g., as 

“Rembrandt,” “Caracas,” "Sirius,” “the Mississippi,” “The Odyssey,” 

“eight”—but also names having a structure that expresses some analysis 

of the way in which they denote.4 As examples of the latter we may cite: 

"five hundred nine,” which denotes a certain prime number, and in the way 

expressed by the linguistic structure, namely as being five times a hundred 

plus nine; “the author of Waverley,” which denotes a certain Scottish 

novelist, namely Sir Walter Scott, and in the particular way expressed by 

the linguistic structure, namely as having written Waverley, "Rembrandt’s 

birthplace”; “the capital of Venezuela”; “the cube of 2.” 

The distinction is not always clear in the natural languages between the 

two kinds of proper names, those which are arbitrarily assigned to have a 

certain meaning (primitive proper names, as we shall say in the case of a 

formalized language), and those which have a linguistic structure of mean¬ 

ingful parts. E.g., "The Odyssey” has in the Greek a derivation from 

Odysseus, and it may be debated whether this etymology is a mere 

matter of past history or whether it is still to be considered in modern 

Enghsh that the name “The Odyssey” has a structure involving the name 

Odysseus.” This uncertainty is removed in the case of a formalized 

anguage by fixing and making explicit the formation rules of the 
language (§07). 

There is not yet a theory of the meaning of proper names upon which 

terms as singuhr naHi' ™ haveTradiUo3 nJanner because su<* alternate 
avoid. The single word naSToulTwe associates which we wish t. 

w <the°lik*fk to^the* tracUticm^do^htte^f 
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general agreement has been reached as the best. Full discussion of the 

question would take us far beyond the intended scope of this book. But it 

is necessary to outline briefly the theory which will be adopted here, due in 

its essentials to Gottlob Frege.5 

The most conspicuous aspect of its meaning is that a proper name always 

is, or at least is put forward as. a name of something. We shall say that a 

proper name denotes6 or names1 that of which it is a name. The relation 

between a proper name and what it denotes will be called the name relation* 

•See his paper, “Ueber Sinn und Bedeutung." in Zeitschrift fur Philosophic und 
philosophische Kritik, vol. 100 (1892), pp. 25-50. (There are an Italian translation of 
this by L. Geymonat in Gottlob Frege, Aritmetica e Logica (1948), pp. 215-252, and 
English translations by Max Black in The Philosophical Review, vol. 57 (1948), pp. 
207-230, and by Herbert Feigl in Readings in Philosophical Analysis (1949), pp. 
85-102. See reviews of these in The Journal of Symbolic Logic, vol. 13 (1948), pp. 
152-153, and vol. 14 (1949), pp. 184-185.) 

A similar theory, but with some essential differences, is proposed by Rudolf Carnap 
in his recent book Meaning and Necessity (1947). 

A radically different theory is that of Bertrand Russell, developed in a paper in 
Mind, vol. 14 (1905), pp. 479-493; in the Introduction to the first volume of Prxncipia 
Matheynatica (by A. N. Whitehead and Bertrand Russell, 1910); and in a number of 
more recent publications, among them Russell's book. An Inquiry into Meaning & 
Truth (1940). The doctrine of Russell amounts very nearly to a rejection of proper 
names as irregularities of the natural languages which are to be eliminated in constructing 
a formalized language. It falls short of this by allowing a narrow category of proper 
names which must be names of sense qualities that are known by acquaintance, and 
which, in Fregean terms, have Bedeutung but not Sinn. 

•In the usage of J. S. Mill, and of others following him, not only a singular name 
(proper name in our terminology) but also a common or general name is said to denote, 
with the difference that the former denotes only one thing, the latter, many things. 
E.g., the common name “man" is said to denote Rembrandt; also to denote Scott; 
also to denote Frege; etc. 

In the formalized languages which we shall study, the nearest analogues of the com¬ 
mon name will be the variable and the form (see §02). And we prefer to use a different 
terminology for variables and forms than that of denoting—in particular because we 
wish to preserve the distinction of a proper name, or constant, from a form which is 
concurrent to a constant (in the sense of § 02), and from a variable which has one thing 
only in its range. In what follows, therefore, we shall speak of proper names only as 

denoting. 
From another point of view common names may be thought of as represented in the 

formalized languages, not by variables or forms, but by proper names of classes (class 
constants). Hence the usage has also arisen according to which a proper name of a class 
is said to denote the various members of the class. We shall not follow this, but shall 
speak of a proper name of a class as denoting the class itself. (Here we agree with Mill, 
who distinguishes a singular collective name, or proper name of a class, from a common 
or general name, calling the latter a “name of a class" only in the distributive sense of 

being a name of each individual.) 
7We thus translate Frege's bedeuten by denote or name. The verb to mean we reserve 

for general use, in reference to possible different kinds of meaning. 
8The name relation is properly a ternary relation, among a language, a word or phrase 

of the language, and a denotation. But it may be treated as binary by fixing the language 
in a particula- «>;ntext. Similarly one should speak of the denotation of a name wxth 
respect to a language, omitting the latter qualification only when the language has been 
fixed or when otherwise no misunderstanding can result. 
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and the thing8 denoted will be called the denotation. For instance, the proper 

name “Rembrandt” will thus be said to denote or name the Dutch artist 

Rembrandt, and he will be said to be the denotation of the name “Rem¬ 

brandt.” Similarly, “the author of Waverley" denotes or names the Scottish 

author, and he is the denotation both of this name and of the name “Sir 

Walter Scott.” 
That the meaning of a proper name does not consist solely in its denotation 

may be seen by examples of names which have the same denotation though 

their meanings are in some sense different. Thus “Sir Walter Scott and 

“the author of Waverley" have the same denotation; it is contained in the 

meaning of the first name, but not of the second, that the person named is 

a knight or baronet and has the given name “Walter” and surname “Scott”;10 

and it is contained in the meaning of the second name, but not of the first, 

that the person named wrote Waverley (and indeed as sole author, in view 

of the definite article and of the fact that the phrase is put forward as a 

proper name). To bring out more sharply the difference in meaning of the 

two names let us notice that, if two names are synonymous (have the same 

meaning in all respects), then one may always be substituted for the other 

without change of meaning. The sentence, “Sir Walter Scott is the author of 

Waverley," has, however, a very different meaning from the sentence, “Sir 

Walter Scott is Sir Walter Scott”: for the former sentence conveys an important 

fact of literary history of which the latter gives no hint. This difference in 

meaning may lead to a difference in truth when the substitution of one name 

for the other occurs within certain contexts.11 E.g., it is true that “George IV 

once demanded to know whether Scott was the author of Waverley”', but 

false that “George IV once demanded to know whether Scott was Scott.”1* 

•The word thing is here used in its widest sense, in short (or anything namable. 
“The term proper name is often restricted to names of this kind, i.e., which have 

as part of their meaning that the denotation is so called or is or was entitled to be so 
called. As already explained, we are not making such a restriction. 

Though it is, properly speaking, irrelevant to the discussion here, it is of interest to 
recall that Scott did make use of “the author of Waverley” as a pseudonym during the 
time that his authorship of the Waverley Novels was kept secret. 

“Contexts, namely, which render the occurrences of the names oblique in the sense 
explained below. 

l*Tbe particular example is due to Bertrand Russell; the point which it illustrates, 
to Frege. 

This now famous question, put to Scott himself in the indirect form of a toast "to the 
author oi Waverley" at a dinner at which Scott was present, was met by him with a flat 
denial. Sire, I am not the author of Waverley." We may therefore enlarge on the 
example by remarking that Scott, despite a pardonable departure from the truth, did 
not mean to go so far as to deny his self-identity (as if he had said “I am not I”). 

sufrely <Ld“0‘.s° understand him. though some must have shrewdly 
guessed the deception as to his authorship of Waverley. 7 
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Therefore, besides the denotation, we ascribe to every proper name an¬ 

other kind of meaning, the sense,13 saying, e.g., that ‘‘Sir Walter Scott" 

and ‘‘the author of Waverley" have the same denotation but different sen¬ 

ses.14 Roughly, the sense is what is grasped when one understands a name,16 

and it may be possible thus to grasp the sense of a name without having 

knowledge of its denotation except as being determined by this sense. If, in 

particular, the question ‘‘Is Sir Walter Scott the author of Waverley}" is 

used in an intelligent demand for new information, it must be that the 

questioner knows the senses of the names ‘‘Sir Walter Scott" and ‘‘the 

author of Waverley" without knowing of their denotations enough to identify 

them certainly with each other. 

We shall say that a name denotes or names its denotation and expresses16 

its sense. Or less explicitly we may speak of a name just as having a certain 

denotation and having a certain sense. Of the sense we say that it determines 

the denotation, or is a concept17 of the denotation. 

Concepts17 we think of as non-linguistic in character—since synonymous 

names, in the same or different languages, express the same sense or concept 

—and since the same name may also express different senses, either in 

different languages or, by equivocation, in the same language. We are even 

X3We adopt this as the most appropriate translation of Frege's Sinn, especially since 
the technical meaning given to the word sense thus comes to be very close indeed to the 
ordinary acceptation of the sense of an expression. (Russell and some others following 
him have used “meaning" as a translation of Frege's Sjnn.) 

14A similar distinction is made by J. S. Mill between the denotation and the connota¬ 
tion of a name. And in fact we are prepared to accept connotation as an alternative trans¬ 
lation of Sinn, although it seems probable that Frege did not have Mill's distinction in 
mind in making his own. We do not follow Mill in admitting names which have denotation 
without connotation, but rather hold that a name must always point to its denotation 
in some way, i.e., through some sense or connotation, though the sense may reduce in 
special cases just to the denotation’s being called so and so (e.g., in the case of personal 
names), or to its being what appears here and now (as sometimes in the case of the 
demonstrative “this"). Because of this and other differences, and because of the more 
substantial content of Frege's treatment, we attribute the distinction between sense and 
denotation to Frege rather than to Mill. Nevertheless the discussion of names in Mill s 
A System of Logic (1843) may profitably be read in this connection. 

x*It is not meant by this to imply any psychological element in the notion of sense. 
Rather, a sense (or a concept) is a postulated abstract object, with certain postulated 
properties. These latter are only briefly indicated in the present informal discussion; 
and in particular we do not discuss the assumptions to be made about equality of senses, 

since this is unnecessary for our immediate purpose. 
X6This is our translation of Frege's driickt aus. Mill’s term connotes is also acceptable 

here, provided that care is taken not to confuse Mill's meaning of this term with other 
meanings which it has since acquired in common English usage. 

X7This use of concept is a departure from Frege’s terminology. Though not identical 
with Carnap's use of concept in recent publications, it is closely related to it, and was 
suggested to the writer by correspondence with Carnap in 1943. It also agrees well 
with Russell's use of class-concept in The Principles of Mathematics (1903)—cf. $t>y 

thereof. 
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prepared to suppose the existence of concepts of things which have no name 

in any language in actual use. But every concept of a thing is a sense of 

some name of it in some (conceivable) language. 

The possibility must be allowed of concepts which are not concepts of 

any actual thing, and of names which express a sense but have no denotation. 

Indeed such names, at least on one very plausible interpretation, do occur 

in the natural languages such as English: e.g., “Pegasus, 18 the king of 

France in a.d. 1905.“ But, as Frege has observed, it is possible to avoid 

such names in the construction of formalized languages.18 And it is in fact 

often convenient to do this. 

To understand a language fully, we shall hold, requires knowing the senses 

of all names in the language, but not necessarily knowing which senses 

determine the same denotation, or even which senses determine denotations 

at all. 

In a well constructed language of course every name should have just one 

sense, and it is intended in the formalized languages to secure such univ- 

11 While the exact sense of the name "Pegasus" is variable or uncertain, it is. we take 
it, roughly that of the winged horse who took such and such a part in such and such 
supposed events—where only such minimum essentials of the story are to be included as 
it would be necessary to verify in order to justify saying, despite the common opinion, 

that “Pegasus did after all exist." 
We are thus maintaining that, in the present actual state of the English language. 

“Pegasus" is not just a personal name, having the sense of who or what was called so 
and so. but has the more complex sense described. However, such questions regarding 
the natural languages must not be supposed always to have one final answer. On the 
contrary, the present actual state (at any time) tends to be indeterminate in a way to 
leave much debatable. 

“For example, in the case of a formalized language obtained from one of the logistic 
systems of Chapter X (or of a paper by the writer in The Journal of Symbolic Logic, 
vol. 5 (1940), pp. 56-68) by an interpretation retaining the principal interpretation of 
the variables and of the notations A (abstraction) and ( ) (application of function to 
argument), it is sufficient to take the following precautions in assigning senses to the 
primitive constants. For a primitive constant of type o or i the sense must be such 
as—on the basis of accepted presuppositions—to assure the existence of a denotation in 
the appropriate domain. 0 (of truth-values) or 0 (of individuals). For a primitive 
constant of type *f} the sense must be such as—on the same basis—to assure the exist¬ 
ence of a denotation which is in the domain 2133, i.e., which is a function from the (entire) 
domain 23 which is taken as the range of variables of type (}, to the domain 31 which is 
taken as the range of variables of type a. 

Then every well-formed formula without free variables will have a denotation, as 
indeed it must if such interpretation of the logistic system is to accord with formal 
properties of the system. 

As in the case, e.g., of ia{oa). it may happen that the most immediate or naturally 
suggested interpretation of a primitive constant of type ap makes it denote a function 
from a proper part of the domain 33 to the domain 31. In such a case the definition of 
the function must be extended, by artificial means if necessary, over the remainder of 
the domain 33, so as to obtain a function having the entire domain 33 as its range. The 
sense assigned to the primitive constant must then be such as to determine this latter 
function as denotation, rather than the function which had only a proper part of 33 
as its range. ^ K 
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ocacy. But this is far from being the case in the natural languages. In par¬ 

ticular, as Frege has pointed out, the natural languages customarily allow, 

besides the ordinary (gewohnlich) use of a name, also an oblique (ungerade) 

use of the name, the sense which the name would express in its ordinary use 

becoming the denotation when the name is used obliquely.20 

Supposing univocacy in the use of names to have been attained (this 

ultimately requires eliminating the oblique use of names by introducing 

special names to denote the senses which other names express21), we make, 

with Frege, the following assumptions, about names which have a linguistic 

structure and contain other names as constituent parts: (1) when a con- 

*°For example, in “Scott is the author of Waverley" the names ‘ Scott, Waver ley, 
"the author of Waverley" have ordinary occurrences. But in “George IV wished to 
know whether Scott was the author of Waverley" the same three names have oblique 
occurrences (while “George IV“ has an ordinary occurrence). Again, in "Schliemann 
sought the site of Troy“ the names “Troy“ and “the site of Troy“ occur obliquely. 
For to seek the site of some other city, determined by a different concept, is not the 
same as to seek the site of Troy, not even if the two cities should happen as a matter of 
fact (perhaps unknown to the seeker) to have had the same site. 

According to the Fregean theory of meaning which we are advocating, Schliemann 
sought the site of Troy“ asserts a certain relation as holding, not between Schliemann 
and the site of Troy (for Schliemann might have sought the site of Troy though Troy 
had been a purely fabulous city and its site had not existed), but between Schliemann 
and a certain concept, namely that of the site of Troy. This is, however, not to say that 
“Schliemann sought the site of Troy" means the same as “Schliemann sought the con¬ 
cept of the site of Troy." On the contrary, the first sentence asserts the holding of a 
certain relation between Schliemann and the concept of the site of Troy, and is true, 
but the second sentence asserts the holding of a like relation between Schliemann and 
the concept of the concept of the site of Troy, and is very likely false. The relation 
holding between Schliemann and the concept of the site of Troy is not quite that o 
having sought, or at least it is misleading to call it that—in view of the way in which 

the verb to seek is commonly used in English. 
(W. V. Quine—in The Journal of Philosophy, vol. 40 (1943), pp. 113-127, and e se- 

where—introduces a distinction between the “meaning" of a name and what the name 
"designates" which parallels Frege's distinction between sense and denotation, also a 
distinction between “purely designative" occurrences of names and other occurrences 
which coincides in many cases with Frege's distinction between ordinary and o ique 
occurrences. For a discussion of Quine’s theory and its differences from Frege a 
review by the present writer, in The Journal of Symbolic Logic, vol. 8 (1943), pp. * 
also a note by Morton G. White in Philosophy and Phenomenological Research, vol. v, 

no. 2 (1948). pp. 305-308.) . , 
11 As an indication of the distinction in question we shall sometimes (as we chain uio 

second paragraph of footnote 20) use such phrases as “the concept of Sir Walter co , 
“the concept of the author of Waverley." "the concept of the site of Troy to denoted 
same concepts which are expressed by the respective names Sir Walter Sco , 
author of Waverley." "the site of Troy." The definite article “the" sufficiently distin¬ 
guishes the phrase (e.g.) “the concept of the site of Troy" from the similar p rase 
concept of the site of Troy." the latter phrase being used as a common name to reier 

any one of the many different concepts of this same spot. 
This device is only a rough expedient to serve the purpose of informal ^ussxon- * 

does not do awav with the oblique use of names because, when the phrase t e con^ P 
of the site of _ o/" is used in the way described, it contains an oblique occurrenc 

"the site of Troy." 
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stituent name is replaced by another having the same sense, the sense of the 

entire name is not changed; (2) when a constituent name is replaced by 

another having the same denotation, the denotation of the entire name is 

not changed (though the sense may be).*2 

We make explicit also the following assumption (of Frege), which, like 

(1) and (2). has been implicit in the foregoing discussion: (3) The denotation 

of a name (if there is one) is a function of the sense of the name, in the sense 

of §03 below; i.e., given the sense, the existence and identity of the deno¬ 

tation are thereby fixed, though they may not necessarily therefore be 

known to every one who knows the sense. 

02. Constants and variables. We adopt the mathematical usage 

according to which a proper name of a number is called a constant, and in 

connection with formalized languages we extend this usage by removing 

the restriction to numbers, so that the term constant becomes synonymous 

with proper name having a denotation. 

However, the term constant will often be applied also in the construction 

of uninterpreted calculi—logistic systems in the sense of §07—some of the 

symbols or expressions being distinguished as constants just in order to 

treat them differently from others in giving the rules of the calculus. Ordi¬ 

narily the symbols or expressions thus distinguished as constants will in 

fact become proper names (with denotation) in at least one of the possible 

interpretations of the calculus. 

As already familiar from ordinary mathematical usage, a variable is a 

symbol whose meaning is like that of a proper name or constant except that 

the single denotation of the constant is replaced by the possibility of various 

values of the variable. 

Because it is commonly necessary to restrict the values which a variable 

may take, we think of a variable as having associated with it a certain non¬ 

empty range of possible values, the range of the variable as we shall call it. 

Involved in the meaning of a variable, therefore, are the kinds of meaning 

which belong to a proper name of the range.23 But a variable must not be 

'*To avoid serious difficulties, we must also assume when a constituent name has no 
denotation that the entire name is then likewise without denotation. In the natural 
languages such apparent examples to the contrary as "the myth of Pegasus," "the 
search by Ponce de Leon for the fountain o/ youth” are to be explained as exhibiting 
oblique occurrences of the italicized constituent name. 

“Thus the distinction of sense and denotation comes to have an analogue for variables 
Two variables with ranges determined by different concepts have to be considered as 
variables of different kinds, even if the ranges themselves should be identical. However, 
because of the restricted variety of ranges of variables admitted, this question does not 
arise in connection with any of the formalized languages which are actually considered 
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identified with a proper name of its range, since there are also differences 

of meaning between the two.24 

The meaning which a variable does possess is best explained by returning 

to the consideration of complex names, containing other names as constit¬ 

uent parts. In such a complex name, having a denotation, let one of the 

constituent names be replaced at one or more (not necessarily all) of its 

occurrences by a variable, say x. To avoid complications, we suppose that z 

is a variable which does not otherwise occur,25 and that the denotation of the 

constituent name which x replaces is in the range of x. The resulting expres¬ 

sion (obtained from the complex name by thus replacing one of the constit¬ 

uent names by a variable) we shall call a /orm.26 Such a form, for each value 

of x within the range of x, or at least for certain such values of x, has a value. 

Namely, the value of the form, for a given value of x, is the same as the 

denotation of the expression obtained from the form by substituting every¬ 

where for x a name of the given value of x (or, if the expression so obtained 

,4That such an identification is impossible may be quickly seen from the point of 
view of the ordinary mathematical use of variables. For two proper names of 
the range are fully interchangeable if only they have the same sense; but two 
distinct variables must be kept distinct even if they have the same range determined 
by the same concept. E.g., if each of the letters x and y is a variable whose range 
is the real numbers, we are obliged to distinguish the two inequalities x(x + y) ^ 0 
and x(x + x) ^ 0 as different —indeed the second inequality is universally true, the 
first one is not. 

,6This is for momentary convenience of explanation. We shall apply the name form 
also to expressions which are similarly obtained but in which the variable x may other¬ 
wise occur, provided the expression has at least one occurrence of x as a free variable 
(see footnote 28 and the explanation in §06 which is there referred to). 

,fThis is a different use of the word form from that which appeared in §00 in the dis¬ 
cussion of form and matter. We shall distinguish the latter use, when necessary, by 
speaking more explicitly of logical form. 

Our present use of the word form is similar to that which is familiar in algebra, and in 
fact may be thought of as obtained from it by removing the restriction to a special kind 
of expressions (polynomials, or homogeneous polynomials). For the special case of 
propositional forms (see §04), the word is already usual in logic in this sense, indepen¬ 
dently of its use by algebraists—see, e.g., J. N. Keynes, Formal Logic, 4th edn., 1906, 
p. 53; Hugh MacColl in Mind, vol. 19 (1910). p. 193; Susanne K. Langer, Introduction 
to Symbolic Logic, 1937, p. 91; also Heinrich Scholz. Vorlesungcn iiber Grundziige dcr 
Mathematischen Logik, 1949 (for the use of Aussagefortn in Gorman). 

Instead of the word form, we might plausibly have used the word variable here, by 
analogy with the way in which we use constant. I.e., just as we apply the term constant 
to a complex name containing other names (constants) as constituent parts, so we might 
apply the term variable to an appropriate complex expression containing variables as 
constituent parts. This usage may indeed be defended as having some sanction in 
mathematical writing. But we prefer to preserve the better established usage according 
to which a variable is always a single symbol (usually a letter or letter with 

subscripts). . 
The use, by some recent authors, of the word function (with or without a qualifying 

adjective) for what we here call a form is, in our opinion, unfortunate, because it ten s 
to conflict with and obscure the abstract notion of a function which will be explaine 

in §03. 



§02] 
CONSTANTS AND VARIABLES 11 

has no denotation, then the form has no value for that value of x).27 

A variable such as x. occurring in the manner just described, is called a 

free variable28 of the expression (form) in which it occurs. 

Likewise suppose a complex name, having a denotation, to contain two 

constituent names neither of which is a part of the other, and let these two 

constituent names be replaced by two variables, say x and y respectively, 

each at one or more (not necessarily all) of its occurrences. For simplicity 

suppose that x and y are variables which do not occur in the original complex 

name, and that the denotations of the constituent names which x and y 

replace are in the ranges of x and y respectively. The resulting expression 

(obtained by the substitution described) is a form, with two free variables 

xand y. For certain pairs of values of x and y, within the ranges of x and y 

respectively, the form has a value. Namely, the value of the form, for given 

values of x and y, is the same as the denotation of the expression obtained 

from the form by substituting everywhere for x and y names of their re- 

”It follows from assumption (2). at the end of §01. that the value thus obtained 
for the form is independent of the choice of a particular name of the given value of x. 

The distinction of sense and denotation is, however, relevant here. For in addition 
to a value of the form in the sense explained in the text (we may call it more explicitly 
a denotation value), a complete account must mention also what we may call a sense 
value of the form. Namely, a sense value of the form is determined by a concept of some 
value of x, and is the same as the sense of the expression obtained from the form by 
substituting everywhere for x a name having this concept as its sense. 

It should also be noted that a form, in a particular language, may have a value even 
for a value of x which is without a name in that language: it is sufficient that the given 
value of x shall have a name in some suitable extension of the language—say, that 
obtained by adding to the vocabulary of the language a name of the given value of x, 
and allowing it to be substitutable for x wherever x occurs as a free variable. Likewise 
a form may have a sense value for a given concept of a value of x if some suitable ex¬ 
tension of the language contains a name having that concept as its sense. 

It is indeed possible, as we shall see later by particular examples, to construct 
languages of so restricted a vocabulary as to contain no constants, but only variables and 
forms. But it would seem that the most natural way to arrive at the meaning of forms 
which occur in these languages is by contemplating languages which are extensions of 
them and which do contain constants—or else, what is nearly the same thing, by 
allowing a temporary change in the meaning of the variables ("fixing the values of the 
variables”) so that they become constants. 

“We adopt this term from Hilbert (1922), Wilhelm Ackermann (1924), J. v. Neu¬ 
mann (1927), Hilbert and Ackermann (1928), Hilbert and Bemays (1934). For what we 
here call a free variable the term real variable is also familiar, having been introduced 
by Giuseppe Peano in 1897 and afterward adopted by Russell (1908), but is less satis¬ 
factory because it conflicts with the common use of "real variable" to mean a variable 
whose range is the real numbers. 

As we shall see later (§00), a free variable must be distinguished from a bound variable 
(m the terminology of the Hilbert school) or apparent variable (Peano's terminology), 
me difference is that an expression containing x as a free variable has values for various 
values of x, but an expression, containing x as a bound or apparent variable only has 
a meaning which is independent of a^-not in the sense of having the same value for 

«££i*1Ue °fd' bUt m thC 561156 th6 assignment of Particular values to x is not a 
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spective values (or, if the expression so obtained has no denotation, then the 

form has no value for these particular values of x and y). 

In the same way forms with three, four, and more free variables may be 

obtained. If a form contains a single free variable, we shall call it a singulary* 

form, if just two free variables, binary, if three, ternary, and so on. A form 

with exactly n different free variables is an n-ary form. 

Two forms will be called concurrent if they agree in value—i.e., either 

have the same value or both have no value—for each assignment of values 

to their free variables. (Since the two forms may or may not have the same 

free variables, all the variables are to be considered together which have 

free occurrences in either form, and the forms are concurrent if they agree 

in value for every assignment of values to these variables.) A form will be 

called concurrent to a constant if, for every assignment of values to its free 

variables, its value is the same as the denotation of the constant. And two 

constants will be called concurrent if they have the same denotation. 

Using the notion of concurrence, we may now add a fourth assumption, 

or principle of meaning, to the assumptions (1)—(3) of the last two para¬ 

graphs of §01. This is an extension of (2) to the case of forms, as follows: 

(4) In any constant or form, when a constituent constant or form is replaced 

by another concurrent to it, the entire resulting constant or form is con¬ 

current to the original one.30 The significance of this principle will become 

clearer in connection with the use of operators and bound variables, explained 

in §06 below. It is to be taken, like (2), as a part of our explanation of the 

name relation, and thus a part of our theory of meaning. 

As in the case of constant, we shall apply the terms variable and form 

also in the construction of uninterpreted calculi, introducing them by special 

definition for each such calculus in connection with which they are to be 

used. Ordinarily the symbols and expressions so designated will be ones 

which become variables and forms in our foregoing sense under one of the 

principal interpretations of the calculus as a language (see §07). 

It should be emphasized that a variable, in our usage, is a symbol of a 

"We follow W. V. Quine in adopting this etymologically more correct term, rather 
than the presently commoner "unary.” 

*°For completeness—using the notion of sense value explained in footnote 27 and 
extending it in obvious fashion to w-ary forms—we must also extend the assumption (1) 
to the case of forms, as follows. Let two forms be called sense-concurrent if they agree 
in sense value for each system of concepts of values of their free variables; let a form 
be called sense-concurrent to a constant if, for every system of concepts of values of its 
free variables, its sense value is the same as the sense of the constant; and let two con¬ 
stants be called sense-concurrent if they express the same sense. Then: (5) In any con¬ 
stant or form, when a constituent constant or form is replaced by another which is sense- 
concurrent to it, the entire resulting constant or form is sense-concurrent to the original one. 
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certain kind31 rather than something (e.g., a number) which is denoted or 

otherwise meant by such symbol. Mathematical writers do speak of "variable 

real numbers,” or oftener "variable quantities,” but it seems best not to 

interpret these phrases literally. Objections to the idea that real numbers 

are to be divided into two sorts or classes, "constant real numbers” and 

"variable real numbers,” have been clearly stated by Frege32 and need not 

be repeated here at length.33 The fact is that a satisfactory theory has never 

been developed on this basis, and it is not easy to see how it might be done. 

The mathematical theory of real numbers provides a convenient source of 

examples in a system of notation*4 whose general features are well established. 

Turning to this theory to illustrate the foregoing discussion, we cite as particular 

examples of constants the ten expressions: 

1 1-4+1 
—. -, 4e*. te, e — e, 
2n 4ti 

n sin 7i/7 

2*' ti/7 

Let us say that x and y are variables whose range is the real numbers, and m. n, r 

are variables whose range is the positive integers.’4 The following are examples 

of forms: 

’‘Therefore, a variable (or more precisely, particular instances or occurrences of a 
variable) can be written on paper—just as the figure 7 can be written on paper, though 
the number 7 cannot be so written except in the indirect sense of writing something 
which denotes it. 

And similarly constants and forms are symbols or expressions of certain kinds. It is 
indeed usual to speak also of numbers and physical quantities as “constants"—but 
this usage is not the same as that in which a constant can be contrasted with a variable, 
and we shall avoid it in this book. 

’’See his contribution to Festschrift Ludwig Bolttmann Gewidmet, 1904. (Frege's 
theory of functions as “ungesattigt,” mentioned at the end of his paper, is another mat¬ 
ter, not necessarily connected with his important point about variables. It will not be 
adopted in this book, but rather we shall take a function—see §03—to be more nearly 
what Frege would call “Werthverlauf einer Function.”) 

’’However, we mention the following parallel to one of Frege's examples. Shall we 
say that the usual list of seventeen names is a complete list of the Saxon kings of 
England, or only that it is a complete list of the constant Saxon kings of England, and 
r?at account must be taken in addition of an indefinite number of variable Saxon 
•ongs? One of these variable Saxon kings would appear to be a human being of a very 
striking sort, having been, say, a grown man named Alfred in a.d. 876, and a bov named 
Edward in a.d. 976. 

According to the doctrine we would advocate (following Frege), there are just seven¬ 
teen Saxon kings of England, from Egbert to Harold, and neither a variable Saxon king 
nor an indeterminate Saxon king is to be admitted to swell the number. And the like 
uoios lor the positive integers, for the real numbers, and for all other domains abstract 

Sd V?nablh1? °r indeterminacy, where such exists, is a matter of language 
to symbols or expressions. 6 K 

numeric "S/!tCm °f no^tion” rather ^ "language” because only the specifically 
S Th" CaH re?arded “ wel1 established in ordinary mathematical 
by onf oJtnnth? UfU.tlly S^PP‘f“ented (for the statement of theorems and proofs) 
Writer * f h® natUral Un«ua8es' according to the choice of the particular 

'.“pSTofrsitr °umber- " • *he —■ 
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1 l 1 1 - 4 + 1 
y.-.-. - —.- 

y x 2x 4x 

x — x, >i — n. 
r sin x 

2 r' x 

4ex, xex, xx, 

sin r 
» 

r 

ye-. -L. 1LZ.m 1 
xy xr mn 

The forms on the first two lines are singular}', each having one free variable, y, x, n, 

or r as the case may be. The forms on the third line are binary, the first two having 

x and y as free variables, the third one x and r, the fourth one x and w.»* 

The constants 

1 . 1 - 4 + 1 
— — and - 

2-i 4 n 

are not identical. But they are concurrent, since each denotes the same number.*7 

Similarly the constants e — e and 0, though not identical, are concurrent because 

the numbers e — e and 0 are identical. Similarly — i/2i and — 1/2. 

The form xe», for the value 0 of x. has the value 0. (Of course it is the number 

0 that is here in question, not the constant 0. so that it is equally correct to say 

that the form xe*, for the value 0 of x, has the value e — e\ or that, for the value 

e - e of x, it has the value 0; etc.) For the value 1 of x the form xe* has the 

value e. For the value 4 of x its value is 4e*. a real number for which (as it happens) 

no simpler name is in standard use. 

The form ye*t for the values 0 and 4 of x and y respectively, has the value 4. 

•To illustrate the remark of footnote 28, following arc some examples of expressions 
containing bound variables: 

j: 
xxdx, lim 

sin x m *»n 

2 n 
n = 1 m — 1 

x - m + 1 

mn 

The first two of these are constants, containing x as a bound variable. The third is a 
singulary form, with x as a free variable and m and n as bound variables. 

A variable may have both free and bound occurrences in the same expression. An 
example is l*xxdx, the double use of the letter x constituting no ambiguity. Other 
examples are the variable Ax in (Dg sin x)Ax and the variable x in x£(A), if the notations 

sin x and £(A) are replaced by their equivalents 

|.m sin(z + Ax) — sin x 

dx -*■ o Ax 

and 
Vl - A*x* 

Vi - 
dx respectively. 

’Whether these two constants have the same sense (as well as the same denotation) 
is a question which depends for its answer on a general theory of equality of senses, 
such as we have not undertaken to discuss here—cf. footnote 15. It is clear that Frege, 
though he formulates no complete theory of equality of senses, would regard these two 
constants as having different senses. But a plausible case might be made out for sup¬ 
posing that the two constants have the same sense, on some such ground as that the 
equation between them expresses a necessary proposition or is true on logical grounds 
alone or the like. doubt there is more than one meaning of “sense," according to 
the criterion adopted for equality of senses, and the decision among them is a matter 
of convention and expediency. 
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For the values 1 and 1 of x and y it has the value lel; or, what is the same thing, 
it has the value e. 

The form — y/xy, for the values e and 2 of x and y respectively, has the value 
— l/e. For the values e and e of x and y. it has again the value — l/e. For the 
values e and 0 of x and y it has no value, because of the non-existence of a quo¬ 
tient of 0 by 0. 

The form — r/xr, for the values e and 2 of x and r respectively, has the value 
— l/e. But there is no value for the values e and e of x and r, because e is not 
in the range of r (e is not one of the possible values of r). 

The forms 
1 ,1-4+1 

-and - 
2x 4x 

are concurrent, since they are both without a value for the value 0 of x, and 
they have the same value for all other values of x. The forms — 1/x and — y/xy 
fail to be concurrent, since they disagree for the value 0 of y (if the value of x 
is not 0). But the forms — 1/x and — r/xr are concurrent. 

The forms — 1/y and — 1/x are not concurrent, as they disagree, e.g., for the 
values 1 and 2 of x and y respectively. 

The forms x — x and n — n are concurrent to the same constant, namely 0,** 
and are therefore also concurrent to each other. 

The forms — x/2x and — r/2r are non-concurrent because of disagreement 
for the value 0 of x. The latter form, but not the former, is concurrent to a 
constant, namely to — 1/2. 

03. Functions. By a function—or, more explicitly, a one-valued singulary 

function—we shall understand an operation38 which, when applied to some¬ 
thing as argument, yields a certain thing as the value of the function for that 

argument. It is not required that the function be applicable to every possible 

thing as argument, but rather it lies in the nature of any given function to 

be applicable to certain things and. when applied to one of them as argu¬ 

ment, to yield a certain value. The things to which the function is applicable 
constitute the rang, 0f the function (or the range of arguments of the function) 

and the values constitute the range of values of the function. The function 
itself consists in the yielding or determination38 of a value from each argu¬ 
ment in the range of the function. 

_Asregardsequality or identity of functions we make the decision which is 

-Of 0t^er„COnstant Which is concurrent to 0. 

near-synonyms^of ^function^^cT tker” “determin^ion” as here used are 

wouidy£ o^to the su^don“dci?cS^ “ a 
we are engaged in informal explanation^Se^n8J' r Introduction. however. 
elaboration by means of synonyms may l?a uLf^nri^! n.f'1' f°r this PurPose- 

Uk® the notion of function as primitive or undefined V,timateIy-lt seems, we 
such as that of a class. (We shall see •flined'°r else 50106 related notion. 
special case of a function. and^^dLJSr^hT*?8.t0 think °f a class « * 

' PUrP0SCS' to reP‘aCe aod do the wor/of So^gte^T^ " 
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usual in mathematics. Namely, functions are identical if they have the same 

range and have, for each argument in the range, the same value. In other 

words, we take the word “function” to mean what may otherwise be called 

a function in extension. If the way in which a function yields or produces 

its value from its argument is altered without causing any change either in 

the range of the function or in the value of the function for any argument, 

then the function remains the same; but the associated function concept, 

or concept determining the function (in the sense of §01), is thereby changed. 

We shall speak of a function from a certain class to a certain class to mean 

a function which has the first class as its range and has all its values in the 

second class (though the second class may possibly be more extensive than 

the range of values of the function). 

To denote the value of a function for a given argument, it is usual to 

write a name of the function, followed by a name of the argument between 

parentheses. And of course the same notation applies (mutatis mutandis) 

with a variable or a form in place of either one or both of the names. Thus 

if / is a function and x belongs to the range of /, then f(x) is the value of the 

function / for the argument x.*° 

This is the usual notation for application of a function to an argument, 

and we shall often employ it. In some contexts (see Chapter X) we find it 

convenient to alter the notation by changing the position of the parentheses, 

so that we may write in the altered notation: if / is a function and x belongs 

to the range of /, then (fx) is the value of the function / for the argument x. 

So far we have discussed only one-valued singulary functions (and have 

used the word “function” in this sense). Indeed no use will be made in this 

book of many-valued functions,41 and the reader must always understand 

"This sentence exemplifies the use of variables to make general statements, which 
we assume is understood from familiar mathematical usage, though it has not yet been 
explained in this Introduction. (See the end of §06.) 

“It is the idea of a many-valued (singulary) function that, for a fixed argument, 
there may be more than one value of the function. If a name of the function is written, 
followed by a name of an argument between parentheses, the resulting expression is a 
common name (see footnote 6) denoting the values of the function for that argument. 

Though many-valued functions seem to arise naturally in the mathematical theories 
of real and complex numbers, objections immediately suggest themselves to the idea 
as just explained and are not easily overcome. Therefore it is usual to replace such many¬ 
valued functions in one way or another by one-valued functions. One method is to 
replace a many-valued singulary function by a corresponding one-valued binary prop¬ 
ositional function or relation (§04). Another method is to replace the many-valued 
function by a one-valued function whose values are classes, namely, the value of the 
one-valued function for a given argument is the class of the values of the many-valued 
function for that argument. Still another method is to change the range of the function, 
an argument for which the function has » values giving way to » different arguments 
for each of which the function has a different one of those » values (this is the standard 
role of the Riemann surface in the theory of complex numbers). 
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“function” to mean a one-valued function. But we go on to explain functions 

of more than one argument. 
A binary function, or function of two arguments;“ is characterized by being 

applicable to two arguments in a certain order and yielding, when so applied, 

a certain value, the value of the function for those two arguments in that 

order. It is not required that the function be applicable to every two things 

as arguments; but rather, the function is applicable in certain cases to an 

ordered pair of things as arguments, and all such ordered pairs constitute 

the range of the function. The values constitute the range of values of the 

function. 

Binary functions are identical (i.e., are the same function) if they have the 

same range and have, for each ordered pair of arguments which lies in that 

range, the same value. 

To denote the value of a binary function for given arguments, it is usual 

to write a name of the function and then, between parentheses and separated 

by a comma, names of the arguments in order. Thus if / is a binary function 

and the ordered pair of x and y belongs to the range of /, then f{x, y) is the 

value of the function / for the arguments x and y in that order. 

In the same way may be explained the notion of a ternary function, of a 

quaternary function, and so on. In general, an n-ary function is applied to 

n arguments in an order, and when so applied yields a value, provided the 

ordered system of n arguments is in the range of the function. The value of 

an n-ary function for given arguments is denoted by a name of the function 

followed, between parentheses and separated by commas, by names of the 
arguments in order. 

Two binary functions <f> and rp are called converses, each of the other, in 

case the two following conditions are satisfied: (1) the ordered pair of x and 

y belongs to the range of <f> if and only if the ordered pair of y and x belongs 

to the range of xp; (2) for all x, y such that the ordered pair of z and y belongs 
to the range of f,*3 

<£(*. y) = rp(y, x). 

A binary function is called symmetric if it is identical with its converse. 

he notions of converse and of symmetry may also be extended to n-ary 

functions, several different converses and several different kinds of symme- 

1“ of variables” 
arguments to which a function is applied^con£usion between 

“The use of the sign J to exprS totftZlf? SU,ch ar8™ents as values. 
the reader. We do not restrict this notoSon to toe ^e? ^ ** assumed ^miliar to 
for identity generally. o the special case of numbers, but use it 
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try appearing when the number of arguments is three or more (we need not 

stop over details of this). 

We shall speak of a function of things of a certain kind to mean a function 

such that all the arguments to which it is applicable are of that kind. Thus 

a singulary function of real numbers, for instance, is a function from some 

class of real numbers to some (arbitrary) class. A binary function of real 

numbers is a binary function whose range consists of ordered pairs of real 

numbers (not necessarily all ordered pairs of real numbers). 

We shall use the phrase “_is a function of_,” filling the blanks 

with forms,44 to mean what is more fully expressed as follows: “There 

exists a function / such that 

_= /(_) 

for all_,” where the first two blanks are filled, in order, with the same 

forms as before, and the third blank is filled with a complete list of the 

free variables of those forms. Similarly we shall use "_is a function of 

_and_,” filling the three blanks with forms, to stand for: “There 

exists a binary function / such that 

_= /(_) 

for all_where the first three blanks are filled, in order, with the same 

forms as before, and the last blank is filled with a complete list of the free 

variables of those forms.45 And similar phraseology will also be used where 

the reference is to a function / of more than two arguments. 

The phraseology just explained will also be used with the added statement 

of a condition or restriction. For example, “_is a function of-and 

_ if_where the first three blanks are filled with forms, and the 

fourth is filled with the statement of a condition involving some or all of 

the free variables of those forms,44 stands for: “There exists a binary function 

/ such that 

_= /(_) 

for all_for which_where the first three blanks are filled, in order, 

“Our explanation assumes that neither of these forms has the particular letter / as 
one of its free variables. In the contrary case, the explanation is to be altered by using 
in place of the letter / as it appears in the text some variable (with appropriate range) 

which is not a free variable of either form. . 
“The theory of real numbers again serving as a source of examples, it is thus true 

that x3 + y* is a function of x + y and xy. But it is false that x3 + x*y — xy + y_ 

is a function of x + y and xy (as is easily seen on the ground that the form x* + * V * 
xy1 + y' is not symmetric). Again, x* + y‘ + r4 + 4x*y + 4xy» + 4a* + 4xx* + 
4t,'z + 4yr* is a function of x + y + z and xy + xz + yz. But x< + y* + *• >s no 

a function of x + y + z and xy + xz + yz. 
‘‘Thus with a propositional form in the sense of §04 below. 
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with the same forms as before, the fourth blank is filled with a complete 

list of the free variables of those forms, and the fifth blank is filled in the 

same way as the fourth blank was before.47 
Also the same phraseology, explained in the two preceding paragraphs, 

will be used with common names48 in place of forms. In this case the forms 

which the common names represent have to be supplied from the context. 

For example, the statement that “The density of helium gas is a function 

of the temperature and the pressure” is to be understood as meaning the same 

as "The density of h is a function of the temperature of h and the pressure of h,” 

where the three italicized forms replace the three original italicized common 

names, and where h is a variable whose values are instantaneous bits of 

helium gas (and whose range consists of all such). Or to avoid introducing the 

variable h with so special a range, we may understand instead: “The density 

of b is a function of the temperature of b and the pressure of 6 if 6 is an 

instantaneous bit of helium gas.” Similarly the statement at the end of §01 

that the denotation of a name is a function of the sense means more explic¬ 

itly (the reference being to a fixed language) that there exists a function / 

such that 

denotation of IV = /(sense of N) 

for all names N for which there is a denotation. 

It remains now to discuss the relationship between functions, in the ab¬ 

stract sense that we have been explaining, and forms, in the sense of the pre¬ 

ceding section (§02). 

If we suppose the language fixed, every singulary form has corresponding 

to it a function / (which we shall call the associated function of the form) by 

the rule that the value of / for an argument x is the same as the value of the 

form for the value x of the free variable of the form, the range of / consisting 

of all x’s such that the form has a value for the value x of its free variable.49 

‘’Accordingly it is true, for example, that: *» + x'y - xy* + y* is a function of * + y 

and xy it x ^ y. For the special case that the variables have a range consisting of real or 
complex numbers, a geometric terminology is often used, thus: x* + - xv1 4- t/» 
is a function of x + y and xy in the half-plane x I> v. y 

MSee footnotes 4, 6. 

f„:^CXaTPle',in the the°Ty, o£ real numbers- the form *(«• - «-•) determines the 

mentTis "k kY 4116 ™le that the value of smh loT an *rgu- 

it CO'tTSC ,the free variable of the form need not be the particular letter x and inrWd 

rtraple in the 
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But, still with reference to a fixed language, not every function is necessarily 

the associated function of some form.60 

It follows that two concurrent singulary forms with the same free variable 

have the same associated function. Also two singulary forms have the same 

associated function if they differ only by alphabetic change of the free vari¬ 

able,61 i.e., if one is obtained from the other by substituting everywhere 

for its free variable some other variable with the same range—with, however, 

the proviso (the need of which will become clearer later) that the substituted 

variable must remain a free variable at every one of its occurrences resulting 
from the substitution. 

As a notation for (i.e., to denote) the associated function of a singulary 

form having, say, x as its free variable, we write the form itself with the 

letters Ax prefixed. And of course likewise with any other variable in place of 

x.62 Parentheses are to be supplied as necessary.63 

the argument 2 is the same as the value of the form \(e9 — e~') for the value 2 of the 
variable y\ and so on for each different argument x that may be assigned.) 

Ordinarily, just the equation 

sinh (x) = — e-•) 

is written as sufficient indication of the foregoing. And this equation may even be called 
a definition of sinh. in the sense of footnote 168, (1) or (3). 

^According to classical real-number theory, the singulary functions from real num¬ 
bers to real numbers (or even just the analytic singulary functions) are non-enumerable. 
Since the forms in a particular language are always enumerable, it follows that there is 
no language or system of notation in which every singulary function from real numbere 
to real numbers is the associated function of some form. 

Because of the non-enumerability of the real numbers themselves, it is even impossible 
in any language to provide proper names of all the real numbers. (Such a thing as, 
e.g., an infinite decimal expansion must not be considered a name of the corresponding 
real number, as of course an infinite expansion cannot ever be written out in full, or 
included as a part of any actually written or spoken sentence.) 

41E.g., as appears in footnote 49, the forms \(e* — c~9) and l(e* — e~9) have the 
same associated function. 

irThus the expressions Ax(J(*« — *"*)). Ay(\(e* — *-*)), sinh are all three synony¬ 
mous, having not only the same denotation (namely the function sinh), but also the 
same sense, even under the severest criterion of sameness of sense. 

(In saying this we are supposing a language or system of notation in which the two 
different expressions sinh and Xz(\(ea — *-•)) both occur. However, the very fact of 
synonymy shows that the expression sinh is dispensable in principle: except for con¬ 
siderations of convenience, it could always be replaced by the longer expression 
Ax(t(ea — e~*)). In constructing a formalized language, we prefer to avoid such dupli¬ 
cations of notation so far as readily possible. See §11.) 

The expressions Az(t(e* — e~a)) and Xy(\(e* — e~9)) contain the variables z and y 

respectively, as bound variables in the sense of footnotes 28, 36 (and of §06 below). 
For, according to the meaning just explained for them, these expressions are constants, 
not singulary forms. But of course the expression \(em — e~B) is a singulary form, with 
x as a free variable. 

The meaning of such an expression as Az{yea), formed from the binary form ye 
by prefixing Ax, now follows as a consequence of the explanation about variables and 
forms in §02. In this expression, x is a bound variable and y is a free variable, and the 



§03] FUNCTIONS 21 

As an obvious extension of this notation, we shall also prefix the letters 

Ax {Xy. etc.) to any constant as a notation for the function whose value is 

the same for all arguments and is the denotation of the constant, the range 

of the function being the same as the range of the variable x.54 This function 

will be called an associated singulary function of the constant, by analogy 

with the terminology “associated function of a form,” though there is the 

difference that the same constant may have various associated functions 

with different ranges. Any function whose value is the same for all argu¬ 

ments will be called a constant function (without regard to any question 

whether it is an associated function of a constant, in some particular language 

under consideration).54 

Analogous to the associated function of a singulary form, a binary form 

has two associated binary functions, one for each of the two orders in which 

the two free variables may be considered—or better, one for each of the two 

ways in which a pair of arguments of the function may be assigned as values 

to the two free variables of the form. 

The two associated functions of a binary form are identical, and thus 

reduce to one function, if and only if they are symmetric. In this case the 

binary form itself is also called symmetric.5# 

Likewise an «-ary form has n! associated n-ary functions, one for each 

of the permutations of its free variables. Some of these associated functions 

are identical in certain cases of symmetry. 

Likewise a constant has associated w-ary functions, for m = 1, 2, 3,, 

by an obvious extension of the explanation already made for the special 

m = 1. And by a still further extension of this we may speak of the 

associated m-ary functions of an n-ary form, when m > n. In particular a 

expression is a singulary form whose values are singulary functions. From it, by pre- 
fuung Xy. we obtain a constant, denoting a singulary function, and the range of values 
oi this singulary function consists of singulary functions. 

out in a/°Tialiled language' the manner >n which parentheses are to be 

sha“ see. not by ^^tin^areX^^^^^^ ^Vufbyl^tabJe^r^sion 

stress: r;s.with °ther ~ 

“Thas ,n connection with real-number theory we use Xx2 as a notation for the func 

^r^if C,°nSiStS °f aU real numbers and ^ose value is 2 for every ar^ment 

same ^the°fra ^able^f the^o^TlTii0 Wh‘Ch the variable after^ » "ot the "iMiree variable °I the form which follows: thus, for examole ln(l/,» .-m\\ 

e.g., the form AyU J- * .{ Zl3™.bemg,cons^Ilt Unctions. For the value 0 of *, 

In both expressions. Ay (J (i “)V^00 AyO. 
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singulary form has not only an associated singulary function but also 

associated binary functions, associated ternary functions, and so on. 

(When, however, we speak simply of the associated function of a singu¬ 

lary form, we shall mean the associated singulary function.) 

The notation by means of A for the associated functions of a form, as 

introduced above for singulary functions, is readily extended to the case of 

m-ary functions,57 but we shall not have occasion to use such extension in this 

book. The passage from a form to an associated function (for which the 

A-notation provides a symbolism) we shall speak of as abstraction or, more 

explicitly, tn-ary functional abstraction (if the associated function is m-ary). 

Historically the notion of a function was of gradual growth in mathe¬ 

matics, and its beginning is difficult to trace. The particular word "function” 

was first introduced by G. W. v. Leibniz and was adopted from him by 

Jean Bernoulli. The notation f(x), or fx, with a letter such as / in the role 

of a function variable, was introduced by A. C. Clairaut and by Leonhard 

Euler. But early accounts of the notion of function do not sufficiently sep¬ 

arate it from that of an expression containing free variables (or a form). 

Thus Euler explains a function of a variable quantity by identifying it with 

an analytic expression,58 i.e., a form in some standard system of mathemat¬ 

ical notation. The abstract notion of a function is usually attributed by 

historians of mathematics to G. Lejeune Dirichlet, who in 1837 was led by 

his study of Fourier series to a major generalization in freeing the idea of a 

function from its former dependence on a mathematical expression or law 

of circumscribed kind.59 Dirichlet’s notion of a function was adopted by 

Bernhard Riemann (1851),60 by Hermann Hankel (1870),81 and indeed by 

mathematicians generally. But two important steps remained to be taken by 

‘This has been done by Carnap in Notes /or Symbolic Logic (1937) and elsewhere. 
“"Functio quantitatis variabilis esl txpressio analytica quomodocunque composita ex 

ilia quantitate variabili et numens seu quantitatibus constantibus. Omnis ergo expressio 
analytica, in qua praeter quantitatem variabilem z omnes quantitates illam expressio- 
nem componentes sunt constantes. erit functio ipsius z . . . Functio ergo quantitatis 
variabilis ipsa erit quantitas variabilis." Introductio in Analysin In/initorum (1748), 

p. 4; Opera, ser. 1, vol. 8, p. 18. See further footnote 62. 
“See his Werke, vol. 1. p. 135. It is not important that Dirichlet restricts his state¬ 

ment at this particular place to continuous functions, since it is clear from other pas¬ 
sages in his writings that the same generality is allowed to discontinuous functionsA)n 
page 132 of the same volume is his well-known example of a function from real numbers 
to real numbers which has exactly two values, one for rational arguments and one lor 

irrational arguments. . . . 
Dirichlet's generalization had been partially anticipated by Euler in 174U (see an 

account by H. Burkhardt in Jahresberxcht (Ur Deutschcn Mathematxker-Verexnx^ung 

vol. 10 part 2 (1908), pp. 13-14) and later by J. B. J. Fourier (see his Oeuvres, vol. 1. 

pp. 207. 209, 230-232). 
“Werke. pp. J-4. 
flIn a paper reprinted in the Maihtmatxschc Annalen, vol. 20 (1882), pp. 63-112. 
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Frege (in his Begriffsschrift of 1879 and later publications): (i) the elimina¬ 

tion of the dubious notion of a variable quantity in favor of the variable as 

a kind of symbol;82 (ii) the admission of functions of arbitrary range by 

removing the restriction that the arguments and values of a function be 

numbers. Closely associated with (ii) is Frege’s introduction of the prop¬ 

ositional function (in 1879). a notion which we go on to explain in the 

next section. 

04. Propositions and propositional functions. According to gram¬ 

marians. the unit of expression in the natural languages is the sentence, 

an aggregation of words which makes complete sense or expresses a 

complete thought. When the complete thought expressed is that of 

an assertion, the sentence is called a declarative sentence. In what follows 

we shall have occasion to refer only to declarative sentences, and the 

simple word “sentence" is to be understood always as meaning a declarative 

sentence.83 

We shall carry over the term sentence from the natural languages 

also to the formalized languages. For logistic systems in the sense of 

§07—uninterpreted calculi—the term sentence will be introduced by special 

definition in each case, but always with the intention that the expres¬ 

sions defined to be sentences are those which will become sentences in 

our foregoing sense under interpretations of the calculus as a formalized 

language.84 

In order to give an account of the meaning of sentences, we shall adopt a 

theory due to Frege according to which sentences are names of a certain 

kind. This seems unnatural at first sight, because the most conspicuous 

use of sentences (and indeed the one by which we have just identified or 

'*The passage quoted from Euler in footnote 58 reads as if his variable quantity were 
a kind of symbol or expression. But this is not consistent with statements made else¬ 
where in the same work which are essential to Euler’s use of the notion of function 
—e.g.. "Si Juerit y functio quaecunque ipsius z. turn vicissitn z erit functio ipsius y" 
( fiera, p. 24), Sed omnis transformatio consistit in alio modo eandem functionem 
expnmendi, quemadmodum ex Algebra constat eandem quantitatem per plures 
diversas formas exprimi posse" (Opera, p. 32). 

be raised whether, say, an interrogative or an imperative logic 
“S' ,n Wh,ch 'negative or imperative sentences and what they express 

°r commands) have roles analogous to those of declarative sentences and 
impositions in logic of ordinary kind. And some tentative proposals have in fact been 
made towards an imperative logic, and also towards an optative logic or logic of wishes 
But these matters are beyond the scope of this book 8 

the tl™.6 exP[anftlon m §02 regarding the use in connection with logistic systems of 

dA“Jrl0gO“S e‘?1“a,‘0n o, 
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described them) is not barely to name something but to make an assertion. 

Nevertheless it is possible to regard sentences as names by distinguishing 

between the assertive use of a sentence on the one hand, and its non-asser- 

tive use, on the other hand, as a name and a constituent of a longer sentence 

(just as other names are used). Even when a sentence is simply asserted, we 

shall hold that it is still a name, though used in a way not possible for other 

names.65 

An important advantage of regarding sentences as names is that all the 

ideas and explanations of §§01-03 can then be taken over at once and applied 

to sentences, and related matters, as a special case. Else we should have to 

develop independently a theory of the meaning of sentences; and in the 

course of this, it seems, the developments of these three sections would be 

so closely paralleled that in the end the identification of sentences as a kind 

of names (though not demonstrated) would be very forcefully suggested as 

a means of simplifying and unifying the theory. In particular we shall require 

variables for which sentences may be substituted, forms which become 

sentences upon replacing their free variables by appropriate constants, and 

associated functions of such forms—things which, on the theory of sentences 

as names, fit naturally into their proper place in the scheme set forth in 

§§02-03. 

Granted that sentences are names, we go on, in the light of the discussion 

in §01, to consider the denotation and the sense of sentences. 

As a consequence of the principle (2), stated in the next to last paragraph 

of §01, examples readily present themselves of sentences which, though in 

some sense of different meaning, must apparently have the same denotation. 

Thus the denotation (in English) of “Sir Walter Scott is the author of 

Waver ley" must be the same as that ot “Sir Walter Scott is Sir Walter Scott,” 

«To distinguish the non-assertive use of a sentence and the assertive use, especially 
in a formalized language, Frege wrote a horizontal line, —, before the sentence in the 
former case, and the character \— before it in the latter case, the addition of the vertical 
line thus serving as a sign of assertion. Russell, and Whitehead and Russell in Princtpta 
Malhemahca, did not follow Frege's use of the horizontal line before non-asserted 
sentences, but did take over the character f— in the role of an assertion sign. 

(Frege also used the horizontal line before names other than sentences, the expression 

so formed being a false sentence. But this is a feature of his notation which need not 

concern us here.) ... 
In this book we shall not make use of a special assertion sign, but (in a lormauzca 

language) shall employ the mere writing of a sentence displayed on a separate line or 
lines as sufficient indication of its assertion. This is possible because sentences use 
non-assertively are always constituent parts of asserted sentences, and cause o 
availability of a two-dimensional arrangement on the printed page. Un a onf" *. » 
sional arrangement the assertion sign would indeed be necessary, if on y as Punc „ 

The sign ' which is employed below, in Chapter I and later chapters, is not the Treg - 

Russell a . tion sign, but has a wholly different use. 
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the name "the author of Waverley" being replaced by another which has 

the same denotation. Again the sentence "Sir Walter Scott is the author of 

Waverley” must have the same denotation as the sentence "Sir Walter 

Scott is the man who wrote twenty-nine Waverley Novels altogether,” since 

the name "the author of Waverley" is replaced by another name of the same 

person; the latter sentence, it is plausible to suppose, if it is not synonymous 

with "The number, such that Sir Walter Scott is the man who wrote that 

many Waverley Novels altogether, is twenty-nine,” is at least so nearly 

so as to ensure its having the same denotation; and from this last sentence 

in turn, replacing the complete subject by another name of the same number, 

we obtain, as still having the same denotation, the sentence "The number of 

counties in Utah is twenty-nine.” 

Now the two sentences, "Sir Walter Scott is the author of Waverley" 

and "The number of counties in Utah is twenty-nine,” though they have 

the same denotation according to the preceding line of reasoning, seem 

actually to have very little in common. The most striking thing that they 

do have in common is that both are true. Elaboration of examples of this 

kind leads us quickly to the conclusion, as at least plausible, that all true 

sentences have the same denotation. And parallel examples may be used in 

the same way to suggest that all false sentences have the same denotation 

(e.g., "Sir Walter Scott is not the author of Waverley" must have the same 

denotation as "Sir Walter Scott is not Sir Walter Scott”). 

Therefore, with Frege, we postulate88 two abstract objects called truth- 

values, one of them being truth and the other one falsehood. And we declare 

all true sentences to denote the truth-value truth, and all false sentences 

to denote the truth-value falsehood. In alternative phraseology, we shall 

also speak of a sentence as having the truth-value truth (if it is true) or 

having the truth-value falsehood (if it is false).87 

The sense of a sentence may be described as that which is grasped when 

one understands the sentence, or as that which two sentences in different 

languages must have in common in order to be correct translations each of 

the other. As in the case of names generally, it is possible to grasp the sense 

h *‘To F^gC' fl a thoroughg°ing Platonic realist, our use of the word "postulate” 
he e would not be acceptable. It would represent his posit.on better to say “hat the 

zr'z "Srthat ,krr'two such thin8s«f^hood 

saw: 
ssir.,»j.5 
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of a sentence without therefore necessarily having knowledge of its denota¬ 

tion (truth-value) otherwise than as determined by this sense. In particular, 

though the sense is grasped, it may sometimes remain unknown whether the 

denotation is truth. 

Any concept of a truth-value, provided that being a truth-value is contained 

in the concept, and whether or not it is the sense of some actually available 

sentence in a particular language under consideration, we shall call a prop¬ 

osition, translating thus Frege’s Gedanke. 

Therefore a proposition, as we use the term, is an abstract object of the 

same general category as a class, a number, or a function. It has not the 

psychological character of William of Ockham’s propositio mentalis or of 

the traditional judgment: in the words of Frege, explaining his term 

Gedanke, it is ‘‘nicht das subjective Thun des Denkens, sondem dessen 

objectiven Inhalt, der fahig ist, gemeinsames Eigenthum von Vielen zu 
• M 

sein. 

Traditional (post-Scholastic) logicians were wont to define a proposition 

as a judgment expressed in words, thus as a linguistic entity, either a sen¬ 

tence or a sentence taken in association with its meaning.68 But in non¬ 

technical English the word has long been used rather for the meaning (in 

our view the sense) of a sentence,69 and logicians have latterly come to 

accept this as the technical meaning of “proposition.” This is the happy 

result of a process which, historically, must have been due in part to sheer 

confusion between the sentence in itself and the meaning of the sentence. 

It provides in English a distinction not easily expressed in some other 

languages, and makes possible a translation of Frege’s Gedanke which is 

less misleading than the word “thought.”70 

According to our usage, every proposition determines or is a concept of 

••E.g., in Isaac Watts's Logick, 1725: “A Proposition is a Sentence wherein two or 
more Ideas or Terms are joined or disjoined by one Affirmation or Negation. ... In 
describing a Proposition I use the Word Terms as well as Ideas, because when mere 
Ideas are join'd in the Mind without Words, it is rather called a Judgment; but when 
clothed with Words, it is called a Proposition, even tho' it be in the Mind only, as well 
as when it is expressed by speaking or Writing.” Again in Richard Whately s Elements 
0/ Logic, 1826: "The second part of Logic treats of the proposition; which is, 'Judgment 
expressed in words.' A Proposition is defined logically 'a sentence indicative ’ i.e. 
affirming or denying; (this excludes commands and questions.)" Here Whately is follow¬ 
ing in part the Latin of Henry Aldrich (1691). In fact these passages show no important 
advance over Petrus Hispanus, who wrote a half rfullennium earlier, but they are quo 

here apropos of the history of the word "proposition” in English. 
'•Consider, for example, the incongruous result obtained by substituting t e''or 3 

"declarative sentence” for the word "proposition” in Lincoln s Gettysburg ress. 
,#For a further account of the history of the matter, we refer to Carnap's Introduction 

to Semantics. 1942, pp. 235-236; and see also R. M. Eaton. General Logic, 1931. 
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(or. as we shall also say. has) some truth-value. It is. however, a somewhat 

arbitrary decision that we deny the name proposition to senses of such 

sentences (of the natural languages) as express a sense but have no truth- 

value.71 To this extent our use of proposition deviates from Frege s 

use of Gedanke. But the question will not arise in connection with the 

formalized languages which we shall study, as these languages will be 

so constructed that every name—and in particular every sentence—has 

a denotation. 

A proposition is then true if it determines or has the truth-value truth, 

false if it has the truth-value falsehood. When a sentence expressing a prop¬ 

osition is asserted we shall say that the proposition itself is thereby 

asserted.12 

A variable whose range is the two truth-values—thus a variable for which 

sentences (expressing propositions) may appropriately be substituted—is 

called a propositional variable. We shall not have occasion to use variables 

71 By the remark of footnote 22, such are sentences which contain non-obliquely one 
or more names that express a sense but lack a denotation—or so, following Frege, we 
shall take them. Examples are: "The present king of France is bald"; "The present king 
of France is not bald"; "The author of Principia Mathematica was born in 1861." 
(As to the last example, it is true that the phrase "the author of Principia Mathematica" 
in some appropriate supporting context may be an ellipsis for something like "the author 
of Principia Mathematica who was just mentioned" and therefore have a denotation; but 
we here suppose that there is no such supporting context, so that the phrase can only 
mean "the one and only author of Principia Mathematica" and therefore have no 
denotation.) 

To sentences as a special case of names, of course the second remark of footnote 22 
also applies. Thus we understand as true (and containing oblique occurrences of names) 
each of the sentences: "Lady Hamilton was like Aphrodite in beauty"; "The fountain 
of youth is not located in Florida"; "The present king of France does not exist." 
Cases of doubt whether a sentence has a truth-value or not are also not difficult to 
find in this connection, the exact meaning of various phraseologies in the natural 
languages being often insufficiently determinate for a decision. 

7,Notice the following distinction. The statement that a certain proposition was 
asserted (say on such and such an occasion) need not reveal what language was used 
nor make any reference to a particular language. But the statement that a certain 
sentence was asserted does not convey the meaning of the transaction unless it is added 
what language was used. For not only may the same proposition be expressed by differ¬ 
ent sentences in different languages, but also the same sentence may be used to assert 
different propositions according to what language the user intends. It is beside the 
point that the latter situation is comparatively rare in the principal known natural 
languages; it is not rare when all possible languages are taken into account. 

Thus, if the language is English, the statement. "Seneca said that man is a rational 
animal, conveys the proposition that Seneca asserted but not the information what 
language he used. On the other hand the statement. "Seneca wrote. ‘Rationale enim 
animal est homo.' " gives only the information what succession of letters he set down. 

^ pr°P°^ltflon he asserted. (The reader may guess or know from other sources 
hat Seneca used Latin, but this is neither said nor implied in the given statement—for 

rtr,etfJe mafy lanSuages besides Latin in which this succession of letters spells a de- 

' thatthouand 1 know'°ne°fthemmay°nce^ave 
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whose values are propositions, but we would suggest the term intensional 

propositional variable for these. 

A form whose values are truth-values (and which therefore becomes a 

sentence when its free variables are replaced by appropriate constants) is 

a propositional form. Usage sanctions this term73 rather than "truth-value 

form,” thus naming the form rather by what is expressed, when constants 

replace the variables, than by what is denoted. 

A propositional form is said to be satisfied by a value of its free variable, 

or a system of values of its free variables, if its value for those values of its 

free variables is truth. (More explicitly, we should speak of a system of 

values of variables as satisfying a given propositional form in a given 

language, but the reference to the particular language may often be omitted 

as clear from the context.) A propositional form may also be said to be true 

or false for a given value of its free variable, or system of values of its free 

variables, according as its value for those values of its free variables is truth 

or falsehood. 

A function whose range of values consists exclusively of truth-values, and 

thus in particular any associated function of a propositional form, is a 

propositional function. Here again, established usage sanctions "proposi¬ 

tional function”74 rather than "truth-value function,” though the latter 

term would be the one analogous to, e.g., the term "numerical function” for 

a function whose values are numbers. 

A propositional function is said to be satisfied by an argument (or 

ordered system of arguments) if its value for that argument (or ordered 

system of arguments) is truth. Or synonymously we may say that a 

propositional function holds for a particular argument or ordered system 

of arguments. 

From its use in mathematics, we assume that the notion of a class is 

already at least informally familiar to the reader. (The words set and 

aggregate are ordinarily used as synonymous with class, but we shall not 

follow this usage, because in connection with the Zermelo axiomatic set 

7*Cf. footnote 26. 
74This statement seems to be on the whole just, though the issue is much obscured by 

divergencies among different writers as to the theory of meaning adopted and in the 
accounts given of the notions of function and proposition. The idea of the propositional 
function as an analogue of the numerical function of mathematical analysis originated 
with Frege, but the term "propositional'’ function is originally Russell s. Russell s 
early use of this term is not wholly clear. In his introduction to the second edition o 
Principia Mathematica (1925) he decides in favor of the meaning which we are adopting 

here, or very nearly that. 
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theory75 we shall wish later to give the word set a special meaning, somewhat 

different from that of class.) We recall that a class is something which has 

or may have members, and that classes are considered identical if and only 

if they have exactly the same members. Moreover it is usual mathematical 

practice to take any given singulary propositional form as having associated 

with it a class, namely the class whose members are those values of the free 

variable for which the form is true. 

In connection with the functional calculi of Chapters HI—VI, or rather, 

with the formalized languages obtained from them by adopting one of the 

indicated principal interpretations (§07), it turns out that we may secure 

everything necessary about classes by just identifying a class with a 

singulary propositional function, and membership in the class with 

satisfaction of the singulary propositional function. We shall consequently 

make this identification, on the ground that no purpose is served by 

maintaining a distinction between classes and singulary propositional 

functions. 

We must add at once that the notion of a class obtained by thus identi¬ 

fying classes with singulary propositional functions does not quite coincide 

with the informal notion of a class which we first described, because it does 

not fully preserve the principle that classes are identical if they have the 

same members. Rather, it is necessary to take into account also the range- 

members of a class (constituting, i.e., the range of the singulary propositional 

function). And only when the range-members are given to be the same is the 

principle preserved that classes are identical if they have the same members. 

This or some other departure from the informal notion of a class is in fact 

necessary, because, as we shall see later,7® the informal notion—in the pres¬ 

ence of some other assumptions difficult to avoid—is self-inconsistent and 

leads to antinomies. (The sets of Zermelo set theory preserve the principle 

that sets having the same members are identical, but at the sacrifice of the 

principle that an arbitrary singulary propositional form has an associated 
set.) 

Since, then, a class is a singulary propositional function, we speak 

of the range of the class just as we do of the propositional function 

(i.e., it is the same thing). We think of the range as being itself a class, 

having as members the range-members of the given class, and having the 
same range-members. 

(In any particular discussion hereafter in which classes are introduced, 

’•Chapter XI. 
’•In Chapter VI. 
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and in the absence of any indication to the contrary, it is to be understood 

that there is a fixed range determined in advance and that all classes have 

this same range.) 

Relations may be similarly accounted for by identifying them with binary 

propositional functions, the relation being said to hold between an ordered 

pair of things (or the things being said to stand in that relation, or to bear 

that relation one to the other) if the binary propositional function is satisfied 

by the ordered pair. Given that the ranges are the same, this makes two re¬ 

lations identical if and only if they hold between the same ordered pairs, 

and to indicate this we may speak more explicitly of a relation in extension— 

using this term as synonymous with relation. 

A property, as ordinarily understood, differs from a class only or chiefly 

in that two properties may be different though the classes determined by 

them are the same (where the class determined by a property is the class 

whose members are the things that have that property). Therefore we 

identify a property with a class concept, or concept of a class in the sense of 

§01. And two properties are said to coincide in extension if they determine 

the same class. 

Similarly, a relation in intension is a relation concept, or concept of a 

relation in extension. 

To turn once more for illustrative purposes to the theory of real numbers and 

its notations, the following are examples of propositional forms: 

sin x = 0, sin x = 2, 

e* > 0, e* > 1. x > 0, 

e > 0, £ < 0. 

** + y* = 3 xy, X^y. 

k — yl < k - y| <«. 

If |x — y| < d then |sin x — sin y| < e. 

Here we are using x. y. I as variables whose range is the real numbers, and £ and 6 

as variables whose range is the positive real numbers. The seven forms on the 

first three lines are examples of singulary propositional forms. Those on the 

fourth line are binary, on the fifth line ternary, while on the last line is an exam¬ 

ple of a quaternary propositional form. 

Each of the singular}' propositional forms has an associated class. Thus with 

the form sin x = 0 is associated the class of those real numbers whose sine is 0, 

i.e., the class whose range is the real numbers and whose members are 0, n, — n, 
2.i, — 2i, 3i, and so on. As explained, we identify this class with the prop¬ 

osition--, i function Ax (sin x = 0), or in other words the function from real num¬ 

bers to truth-values which has for any argument x the value sin x = 0. 
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The two propositional forms ez > 1 and x > 0 have the same associated 

class, namely, the class whose range is the real numbers and whose members 

are the positive real numbers. This class is identified with either ?jc(e* > 1) 

or Ax(x > 0). these two propositional functions being identical with each other 

by the convention about identity of functions adopted in §03. 

Since the propositional form sin x = 2 has the value falsehood for every value 

of x, the associated class Ax (sin x = 2) has no members. 

A class which has no members is called a null class or an empty class. From 

our conventions about identity of propositional functions and of classes, if the 

range is given, it follows that there is only one null class. But. e.g., the range of 

the null class associated with the form sin x = 2 and the range of the null 

class associated with the form e < 0 are not the same: the former range is the 

real numbers, and the latter range is the positive real numbers.77 We shall speak 

respectively of the "null class of real numbers" and of the “null class of positive 

real numbers." 

A class which coincides with its range is called a universal class. For example, 

the class associated with the form ez > 0 is the universal class of real numbers; 

and the class associated with the form e > 0 is the universal class of positive 

real numbers. 

The binary propositional forms x3 + |/5 = 3xy and x =^= y are both symmetric 

and therefore each have one associated binary propositional function or relation. 

In particular, the associated relation of the form x ^ y is the relation of diversity 

between real numbers; or in other words the relation which has the pairs of real 

numbers as its range, which any two different real numbers bear to each other, 

and which no real number bears to itself. 

The ternary propositional forms |x - y\ < / and \x - y\ < e have each three 

associated ternary propositional functions’* (being symmetric in x and y). All 

six of these propositional functions are different; but an appropriately chosen 

pair of them, one associated with each form, will be found to agree in value for 

all ordered triples of arguments which are in the range of both, differing only in 

that the first one has the value falsehood for certain ordered triples of arguments 
which are not in the range of the other. 

05. Improper symbols, connectives. When the expressions, especially 

the sentences, of a language are analyzed into the single symbols of which 

they consist, symbols which may be regarded as indivisible in the sense that 

it would'b^Hfrue ‘‘T** "ith th° ^ membCT* are >dentical. 

<»»« region etc). 
binary propositional function. the spec,al case of a binary relation, or 
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no division of them into parts has relevance to the meaning,79 we have 

seen that there are two sorts of symbols which may in particular appear, 

namely primitive proper names and variables. These we call proper symbols, 

and we regard them as having meaning in isolation, the primitive names as 

denoting (or at least purporting to denote) something, the variables as 

having (or at least purporting to have) a non-empty range. But in addition 

to proper symbols there must also occur symbols which are improper—or 

in traditional (Scholastic and pre-Scholastic) terminology, syncategorematic 

—i.e., which have no meaning in isolation but which combine with proper 

symbols (one or more) to form longer expressions that do have meaning 

in isolation.80 

Conspicuous among improper symbols are parentheses and brackets of 

various kinds, employed (as familiar in mathematical notation) to show the 

way in which parts of an expression are associated. These parentheses and 

brackets occur as constituents in certain combinations of improper symbols 

such as we now go on to consider—either exclusively to show association and 

in connection with other improper symbols which carry the burden of show¬ 

ing the particular character of the notation,81 or else sometimes in a way 

that combines the showing of association with some special meaning-pro¬ 

ducing character.82 

Connectives are combinations of improper symbols which may be used 

together with one or more constants to form or produce a new constant. 

’•The formalized languages are to be so constructed as to make such analysis into 
single symbols precisely possible. In general it is possible in the natural languages only 
partially and approximately—or better, our thinking of it as possible involves a certain 

idealization. . . 
In written English (say), the single symbols obtained are not just the letters vsi 

which words are spelled, since the division of a word into letters has or may have no 
relevance to the meaning. Frequently the single symbols are words. In other cases they 
are parts of words, since the division, e.g., of "books" into "book and s or o 
"colder” into "cold” and "er" does have relevance to the meaning. In still other cases 
the linguistic structure of meaningful parts is an idealization, as when "worse isi ta cn 
to have an analysis parallel to that of "colder," or "I went' an analysis paralle o 
of "I shall go,” or "had I known” parallel to that of "if I should hear." (Less obvious 
and more complex examples may be expected to appear if analysis is presse more 1 

detail.) . . 
“Apparently the case may be excluded that several improper symbols combine wim- 

out any proper symbols to form an expression that has meaning in isola ion. 
division of that exp: > ssion into the improper symbols as parts could then har > 

to have relevance to the meaning. . .. fOC c#>rvp 
“Thus in the expression (/ - (x - «/)) we may say that the inner parentheses :se 

exclusively to show the association together of the part x — y of the expressio , 
that they are used in connection with the sign —. which serves to show su ' 

8,In real number theory, the usual notation | | for the absolute va ue is an le 
example of this latter. Again it may be held that the parentheses have .s^ . 
use in either of the two notations introduced in §03 for application of a singu 

tion to its argument. 
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Then, as follows from the discussion in §02, if we replace one or more of the 

constants each by a form which has the denotation of that constant among 

its values, the resulting expression becomes a form (instead of a constant); 

and the free variables of this resulting form are the free variables of all the 

forms (one or more) which were united by means of the connective (with 

each other and possibly also with some constants) to produce the resulting 

form. In order to give completely the meaning-producing character of a 

particular connective in a particular language, not only is it necessary to 

give the denotation83 of the new constant in every permissible case that the 

connective is used together with one or more constants to form such a new 

constant, but also, for every case that the connective may be used with forms 

or forms and constants to produce a resulting form, it is necessary to give 

the complete scheme of values of this resulting form for values of its free 

variables. And this must all be done in a way to conform to the assump¬ 

tions about sense and denotation at the end of §01, and to the conventions 

about meaning and values of variables and forms as these were described in 

§02. Connectives may then be used not only in languages which contain 

constants but also in languages whose only proper symbols are variables.84 

The constants or forms, united by means of a connective to produce a 

new constant or form, are called the operands. A connective is called sin¬ 

gular)/, binary, ternary, etc., according to the number of its operands. 

A singulary connective may be used with a variable of appropriate range 

as the operand (this falls under our foregoing explanation since, of course, 

a variable is a special case of a form). The form so produced is called an 

associated form of the connective if the range of the variable includes the 

denotations of all constants which may be used as operands of the connective 

and all the relevant values of all the forms which may be used as operands 

of the connective (where by a relevant value of a form used as operand is 

meant a value corresponding to which the entire form, consisting of con¬ 

nective and operand, has a value). And the associated function of a sin¬ 

gulary connective is the associated function of any associated form. The 

associated function as thus defined is clearly unique. 

sin«tthe w^vTtT^rh iu t0 giVC thC SenSC °f the new constant separately. 
he Ya . h,ch **** denotat*on is given carries with it a sense—the same phrase 

Furtl3 ° name thC denotation ™st also express a sense. P 

are a^wed C°"Stan^f' names havin8 a sense but no denotation 
in usua^ systems M l USed W,th connect'ves in the natural languages and 
have employed depend Jn St notation. and indeed some illustrations which we 

"Cf. footnote 27. 
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The notion of the associated function of a singulary connective is possible 

also in the case of a language containing no variable with a range of the kind 

required to produce an associated form, namely we may consider an exten¬ 

sion of the language obtained by adding such a variable. 

In the same way an M-ary connective may be used together with n 

different variables as operands to produce a form; and this is called an 

associated form of the connective if, for each variable, the range includes 

both the denotations of all constants and all relevant values of all forms 

which may be used as operands at that place. The associated function of the 

connective is that one of the associated n-ary functions of an associated 

form which is obtained by assigning the arguments of the function, in their 

order, as values to the free variables of the form in their left-to-right order 

of occurrence in the form. 

In general the meaning-producing character of a connective is most 

readily given by just giving the associated function, this being sufficient 

to fix the use of the connective completely.85 

Indeed there is a close relationship between connectives and functional 

constants or proper names of functions. Differences are that (a) a functional 

constant denotes a function whereas a connective is associated with a function, 

(b) a connective is never replaced by a variable, and (c) the notation for 

application of a function to its arguments may be paralleled by a different 

notation when a corresponding connective takes the place of a functional 

constant. But these differences are from some points of view largely non- 

essential because (a) notations of course have such meaning as we choose 

to give them (within limitations imposed by requirements of consistency 

and adequacy), (b) languages are possible which do not contain variables 

with functions as values and in which functional constants are never re¬ 

placed by variables, and (c) the notation for application of a function 

to its arguments may, like any other, be changed—or even duplicated 

•‘For example, the familiar notation ( — ) for subtraction of real numbers may be 
held to be a connective. That is. the combination of symbols which consists of a left 
parenthesis, a minus sign, and a right parenthesis, in that order, may be considered as 
a connective—where the understanding is that an appropriate constant or form is o 
be filled in at each of two places, namely immediately before and immediately a er 
the minus sign. To give completely the meaning-producing character of this connec ne, 
it is necessary to give the denotation of the resulting constant when constants arc liliea 
in at the two places, and also to give the complete scheme of values of the resulting orm 
when forms arc filled in at the two places, or a form at one place and a constant at tn 
other. In order to do this in a way to conform to §§01, 02, it may often be mos expc 
tious first to introduce (by whatever means may be available in the particular contex ; 
the binary function of real numbers that is called subtraction, and then to declare tn 

to be the associated function of the connective. 
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by introducing several synonymous notations into the same language.8* 

In the case of a language having notations for application of a function to 

its arguments, it is clear that a connective may often be eliminated or dis¬ 

pensed with altogether by employing instead a name of the associated func¬ 

tion—by modifying the language, if necessary, to the extent of adding such 

a name to its vocabulary. However, the complete elimination of all connec¬ 

tives from a language can never be accomplished in this way. l’or the no¬ 

tations for application of a singulary function to its argument, for application 

of a binary function to its arguments, and so on (e.g., the notations for these 

which were introduced in §03) are themselves connectives. And though 

these connectives, like any other, no doubt have their associated functions,87 

nevertheless not all of them can ever be eliminated by the device in question.88 

••Thus, to use once more the example of the preceding footnote, we may hold that 
the notation ( — ) is a connective and that the minus sign has no meaning in isolation. 
Or alternatively we may hold that the minus sign denotes (is a name of) the binary 
function, subtraction, and that in such expressions as. e.g.. (x — y) or (5 — 2) we have 
a special notation for application of a binary function to its arguments, different from 
the notation for this which was introduced in §03. The choice would seem to be arbitrary 
between these two accounts of the meaning of the minus sign. But from one standpoint 
it may be argued that, if we are willing to invent some name for the binary function, 
then this name might just as well, and would most simply, be the minus sign. 

•7As explained below, we are for expository purposes temporarily ignoring difficulties 
or complications which may be caused by the theory of types or by such alternative 
to the theory of types as may be adopted. On this basis, for the connective which is the 
notation for application of a singulary function to its argument, we explain the asso¬ 
ciated function by saying that it is the binary function whose value for an ordered pair 
of arguments /, x is /(x). But if a name of this associated function is to be used for the 
purpose of eliminating the connective, then another connective is found to be necessary, 
the notation, namely, for application of a binary function to its arguments. If the latter 
connective is to be eliminated by using a name of its associated function, then the no¬ 
tation for application of a ternary function to its arguments becomes necessary. And 
80 Obviously no genuine progress is being made in these attempts. 

(After studying the theory of types the reader will see that the foregoing statement, 
and others we have made, remain in some sense essentially true on the basis of that 
theory. It is only that the connective, e.g., which is the notation for application of a 
singulary function to its argument must be thought of as replaced by many different 

l"iCft 'Vn corresponding to different types, and each of these has its own associated 

Deri ve a‘ternat,vely-.,f we choose to retain this connective as always the same con- 
' ■ re8.8[dless of considerations of type, then there may well be no variable in the 

of the laVeuacc ^ re<luired to P™duce an associated form: an extension 
but not r8 8^ by add,n8 such a variable can be made to provide an associated form 
but not so easily a name of the associated function. See Carnap. The Logical Syntax of 

also'EWnJ*2 v I" f°°tnote 131 )• examples at the end of §53. and references there given- 

°L"i-nte?ypiCal Var,ab,CS” in " s- vol. 43 (?934>: 
f£tnote UOM * y arSkl m the aPPendix to his Wahrheilsbegri/f (cited in 

••There is. however a device which may be used in appropriate context (cf Chanter 

f^LtU to"ts a%ument'SfiSZST* ‘“‘""I!*appIicatio^UasinX 
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Connectives other than notations for application of a function to its 

arguments are apparently always eliminable in the way described by a 

sufficient extension of the language in which they occur (including if nec¬ 

essary the addition to the language of notations for application of a function 

to its arguments). Nevertheless such other connectives are often used— 

especially in formalized languages of limited vocabulary, where it may be 

preferred to preserve this limitation of vocabulary, so as to use the language 

as a means of singling out for separate consideration some special branch 

of logic (or other subject). 

In particular we shall meet with sentence connectives in Chapter I. Namely, 

these are connectives which are used together with one or more sentences 

to produce a new sentence; or when propositional forms replace some or 

all of the sentences as operands, then a propositional form is produced rather 

than a sentence. 

The chief singulary sentence connective we shall need is one for negation. 

In this role we shall use, in formalized languages, the single symbol which, 

when prefixed to a sentence, forms a new sentence that is the negation of 

the first one. The associated function of this connective is the function from 

truth-values to truth-values whose value for the argument falsehood is truth, 

and whose value for the argument truth is falsehood. For convenience in 

reading orally expressions of a formalized language, the symbol - may be 

rendered by the word “not” or by the phrase “it is false that.” 

The principal binary sentence connectives are indicated in the table which 

follows. The notation which we shall use in formalized languages is shown 

in the first column of the table, with the understanding that each of the 

two blanks is to be filled by a sentence of the language in question. In the 

second column of the table a convenient oral reading of the connective is 

suggested, or sometimes two alternative readings; here the understanding 

is that the two blanks are to be filled by oral readings of the same two sen¬ 

tences (in the same order) which filled the two corresponding blanks in the 

first column; and words which appear between parentheses are words which 

that 11-ary functions in the sense thus obtained can be made to serve all the ordinary, 
purposes of n-ary functions (in any sense). 

The alternative device of reducing (e.g.) a binary function to a singulary function by 
reconstruing it as a singulary function whose arguments are ordered pairs is also useful 
in certain contexts (e.g., in axiomatic set theory). This device does not (at least pritna 
facie) serve to reduce the number of connectives to one, as besides the notation for 
application of a singulary function to its argument there will be required also a con¬ 
nective which unites the names of two things to form a name of their ordered pair 
(or at least some notation for this latter purpose). Nevertheless it is a device which 
may sometimes be used to accomplish a reduction, especially where other connectives 

or operators (§06)—are available. 



§05] IMPROPER SYMBOLS, CONNECTIVES 37 

may ordinarily be omitted for brevity, but which are to be supplied whenever 

necessary to avoid a misunderstanding or to emphasize a distinction. In 

the third column the associated function of the connective is indicated by 

means of a code sequence of four letters: in doing this, t is used for truth and 

f for falsehood, and the first letter of the four gives the value of the function 

for the arguments 1.1, the second letter gives the value for the arguments 

t, f. the third letter for the arguments f. t. the fourth letter for the argu¬ 

ments f. f. In many cases there is an English name in standard use. which 

may denote either the connective or its associated function. This is indicated 

in a fourth column of the table; where alternative names are in use, both are 

given, and in some cases where none is in use a suggested name is supplied. 

or (or both). «tf (Inclusive) disjunction, 

alternation. 

if 89 ttft Converse implication. 

If then 89 tftt The (truth-functional) 

conditional,90 

(materially) implies 
89 

(material) implication. 

if and only if ®9 tfft The (truth-functional) 

biconditional,90 

is (materially) equi- (material) equivalence. 

valent to 89 

and tfff Conjunction. 

Not both and fm Non-conjunction, 

Sheffer's stroke. 

or but not both, fttf Exclusive disjunction, 

is not (materially) (material) non¬ 
equivalent to 89 equivalence. 

but not ftff (Material) non-implication. 

Not hut fftf Converse non-implication. 

Neither nor ffft Non-disjunction. 

EngHsh W°rds "if ” "imP,ies>” "equivalent” in 
must not be taken as indicating that the meanings of these English 

these oral readings 
words are faithfully 
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The notations which we use as sentence connectives—and those which we 

use as quantifiers (see below)—are adaptations of those in Whitehead and 

Russell’s Principia Matliematica (some of which in turn were taken from 

Peano). \ arious other notations are in use.91 and the student who would 

rendered by the corresponding connectives in all. or even in most, cases. On the con¬ 
trary, the meaning-producing character of the connectives is to be learned with accuracy 
from the third column of the table, where the associated functions are given, and the 
oral readings supply at best a rough approximation. 

As a matter of fact, the words “if . . . then" and “implies" as used in ordinary non¬ 
technical English often seem to denote a relation between propositions rather than 
between truth-values. Their possible meanings when employed in this way are difficult 
to fix precisely and we shall make no attempt to do so. But we select the one use of the 
words “if . . . then" (or implies")—their material use. we shall call it—in which they 
may be construed as denoting a relation between truth-values, and we assign this 
relation as the associated function for the connective id 1. 

As examples of the material use of “if . . . then." consider the four following English 
sentences: 

(I) If Joan of Arc was a patriot then Nathan Hale was a patriot. 
(II) ^ Joan of Arc was a patriot then Yidkun Quisling was a patriot. 
fiii) If \ idkun Quisling was a patriot then attar of roses is a perfume. 
(iv) If \ idkun Quisling was a patriot then Limburger cheese is a perfume. 
For the sake of the illustration let us suppose examination of the historical facts to 

reveal that Joan of Arc and Nathan Hale were indeed patriots and that Vidkun Quisling 
was not a patriot. Then (i). (lii), and (iv) are true, and (ii) is false; and to reach these 
conclusions no examination is necessary of the characteristics of either attar of roses or 
Limburger cheese. (If the reader is inclined to question the truth of. e.g., (iii) on the 
ground of complete lack of connection between Yidkun Quisling and attar of roses, 
then this means that he has in mind some other use of "if . . . then" than the material 
use.) 

9(>These terms were introduced by Quine, who uses them for "the mode of composition 
described in’ the list of truth-values as given in the third column of the table—i.e., 
in effect, and in our terminology, for the associated function of the connective rather 
than for the connective itself. See his Mathematical Logic, 1940, pp. 15. 20. 

We prefer the better established terms material implication and material equivalence, 
from which the adjective material may be omitted whenever there is no danger of con¬ 
fusion with other kinds of implication or equivalence—as. for example, with formal 
implication and formal equivalence (§06), or with kinds of implication and equivalence 
(belonging to modal logic) which are relations between propositions rather than be¬ 
tween truth-values. 

•‘Worthy of special remark is the parenthesis-free notation of Jan Lukasiewicz. In 
this, the letters X, A, C, £, K arc used in the roles of negation, disjunction, implication, 
equivalence, conjunction respectively. Further letters may be introduced if desired 
(R has been employed as non-equivalence. D as non-conjunction). In use as a sentence 
connective, the letter is written first and then in order the sentences or propositional 
forms together with which it is used. No parentheses or brackets or other notations 
specially to show association are necessary. E.g.. the propositional form 

[[/>=> [q vr]] ID ~/>] 

(where p, qt r are propositional variables) becomes, in the Lukasiewicz notation, 

CCpAqrXp. 

It is of course possible to apply the same idea to other connectives, in particular to 
the notation for application of a singulary function to its argument. Hence (see foot¬ 
note 88) parentheses and brackets may be avoided altogether in a formalized language. 
The possibility of this is interesting. But the notation so obtained is unfamiliar, and 
less perspicuous than the usual one. 
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compare the treatments of different authors must learn a certain facility 

in shifting from one system of notation to another. 

The brackets which we indicate as constituents in these notations may in 

actual use be found unnecessary at certain places, and we may then just omit 

them at such places (though only as a practically convenient abbreviation). 

We shall use the term truth-function92 for a propositional function of truth- 

values which has as range, if it is n-ary, all ordered systems of n truth-values. 

Thus every associated function of a sentence connective is a truth-function. 

And likewise every associated function of a form built up from propositional 

variables solely by iterated use of sentence connectives.93 

06. Operators, quantifiers. An operator is a combination of improper 

symbols which may be used together with one or more variables—the 

operator variables (which must be fixed in number and all distinct)—and one 

or more constants or forms or both—the operands—to produce a new con¬ 

stant or form. In this new constant or form, however, the operator variables 

are at certain determinate places not free variables, though they may have 

been free variables at those places in the operands. 

To be more explicit, we remark that, in any application of an operator, the 

operator variables may (and commonly will) occur as free variables in some 

of the operands. In the new constant or form produced we distinguish three 

possible kinds of occurrences of the operator variables, viz.: an occurrence 

in one of the operands which, when considered as an occurrence in that 

operand alone, is an occurrence as a free variable; an occurrence in one of 

the operands, not of this kind; and an occurrence which is an occurrence as an 

operator variable, therefore not in any of the operands. In the new constant 

or form, an occurrence of one of the two latter kinds is never an occurrence 

as a free variable, and each occurrence of the first kind is an occurrence as a 

free variable or not, according to some rule associated with the particular 

operator.94 The simplest case is that, in the new constant or form, none of the 

occurrences of the operator variables are occurrences as free variables. And 

this is the only case with which we shall meet in the following chapters 

•*\Ve ad°pt this term from Principia Mathematica, giving it substantially the meaning 
which it acquires through changes in that work that were made (or rather, proposed) 

•»SSe in h‘S introduction to the second edition of it. 
‘For example, the associated function of the propositional form mentioned in foot- 

note w I. 

Una'S.dw Jequire in the of each operator variable that all occurrences of the first 
larV,, ^ °CC,Urre"CeS 45 free variat>les or else all not. in any on, occurrence of a 
rtonZZTjand the,new instant or form produced. For operators violating this 

anT r rl r ?‘ °Und aTng CX,ISt,ng standard mathematical and logical notations, 

able to aJSd Y mV°lve Certain anoma,ies of waning which it is prefer! 
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(though many operators which are familiar as standard mathematical 
notation fail to fall under this simplest case). 

Variables thus having occurrences in a constant or form which are not 

occurrences as free variables of it are called bound variables of the constant or 

form.95 The difference is that a form containing a particular variable, say zt 

as a free variable has values for various values of the variable, but a constant 

or form which contains x as a bound variable only has a meaning which is 

independent of x not in the sense of having the same value for every value 

of x, but in the sense that the assignment of particular values to x is not a 
relevant procedure.96 

It may happen that a form contains both free and bound occurrences of 

the same variable. This case will arise, for example, if a form containing a 

particular variable as a free variable and a form or constant containing that 

same variable as a bound variable are united by means of a binary connec¬ 
tive.97 

As in the case of connectives, we require that operators be such as to con¬ 

form to the principles (1 )-(3) at the end of §01; also that they conform to the 

conventions about meaning and values of variables as these were described 
in §02, and in particular to the principle (4) of §02.98 

An operator is called m-ary-n-ary if it is used with m distinct operator 

variables and n operands." The most common case is that of a singulary- 

singulary operator—or, as we shall also call it, a simple operator. 

In particular, the notation for singulary functional abstraction, which 

f5Cf. footnote 28. 

••Therefore a constant or form which contains a particular variable as a bound variable 
is unaltered in meaning by alphabetic change of that variable, at all of its bound occur¬ 
rences, to a new variable (not previously occurring) which has the same range. The 
condition in parentheses is included only as a precaution against identifying two varia¬ 
bles which should be kept distinct, and indeed it may' be weakened somewhat—cf. the 
remark in §03 about alphabetic change of free variables. 

E.g., the constant \\x*dx (see footnote 36) is unaltered in meaning by alphabetic 
change of the variable x to the variable y: it has not only the same denotation but also 
the same sense as \*0y*dy. 

•7See illustrations in the second paragraph of footnote 36. 
••And also to the principle (5) of footnote 30. 
••Thus, in the theory' of real numbers, the usual notation for definite integration is a 

singulary'-ternary operator. And in. e.g., the form ffjX*dx (see footnote 36) the oper¬ 
ator variable is x and the three operands are the constant 0, the form x, and the form x*. 

Again, the large H (product sign), as used in the third example at the beginning of 
footnote 36, is part of a singulary-ternary operator. The signs = above and below the 
PI are not to be taken as equality signs in the ordinary' sense (namely that of footnote 
43) but as improper symbols, and also part of the operator. In the particular application 
of the operator, as it appears in this example, the operator variable is m and the 
operands are 1, w, and 

x — m + 1 

nui 
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was introduced in §03, is a simple operator (the variable which is placed 

immediately after the letter X being the operator variable). We shall call 

this the abstraction operator or, more explicitly, the singulary functional 

abstraction operator. In appropriate context, as we shall see in Chapter X. 

all other operators can in fact be reduced to this one.100 

Another operator which we shall use—also a simple operator is the 

description operator, (t ). To illustrate, let the operator variable be x. Then the 

notation (»x) is to have as its approximate reading in words, "the x such 

that”; or more fully, the notation is explained as follows. It may happen 

that a singulary propositional form whose free variable is x has the value 

truth for one and only one value of x, and in this case a name of that value 

of x is produced by prefixing (»x) to the form. In case there is no value of x 

or more than one for which the form has the value truth, there are various 

meanings which might be assigned to the name produced by prefixing (ix) 

to the form; the analogy of English and other natural languages would 

suggest giving the name a sense which determines no denotation; but we 

prefer to select some fixed value of x and to assign this as the denotation 

of the name in all such cases (this selection is arbitrary, but is to be made 

once for all for each range of variables which is usedV 

Of especial importance for our purposes are the quantifiers. These are 

namely operators for which both the operands and the new constant or form 

produced by application of the operator are sentences or propositional forms. 

As the universal quantifier (when, e.g., the operator variable is x) we use 

As another example of application of the same operator, showing both bound and free 
occurrences of m, we cite 

m-m+n+1 

n x-^p- 
m-m + l nm 

Examples of operators taking more than one operator variable are found in familiar 
notations for double and multiple limits, double and multiple integrals. 

It should also be noted that n-ary connectives may, if we wish, be regarded as 
0-ary-n-ary operators. 

‘“In the combinatory logic of H. B. Curry (based on an idea due to M. Schbnfinkel) 
a more drastic reduction is attempted, namely the complete elimination of operators, 
of variables, and of all connectives, except a notation for application of a singulary 
function to its argument, so as to obtain a formalized language in which, with the 
exception of the one connective, all single symbols are constants, and which is neverthe¬ 
less adequate for some or all of the purposes for which variables are ordinarily used. 
I his is a matter beyond the scope of this book, and the present status of the undertaking 
is too complex for brief statement. The reader may be referred to a monograph by the 
present writer, The Calculi o/ Lambda-Conversion (1941), which is concerned with a 
related topic; also to papers by SchOnfinkel. Curry, and J. B. Rosser which are there 

2dj oaoSe* Cral papCrS b>’Curry and by Rosser in The Journal of Symbolic Logic in 1941 
!lan exPosltory paper by Robert Feys in Revue Philosophique de Louvain 

pp. 391-399 ’ PP‘ 74_103' 237"270- and to a PaPer by Curry in Synlhese. vol. 7 (1949)! 
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the notation (Vx) or (x), prefixing this to the operand. The universal 

quantifier is thus a simple operator, and we may explain its meaning as 

follows (still using the particular variable x as an example), (x)_is 

true if the value of_is truth for all values of x, and (x)_is false if 

there is any value of x for which the value of_is falsehood. Here the 

blank is to be filled by a singulary propositional form containing x as a free 

variable, the same one at all four places. Or if as a special case we fill the 

blank with a sentence, then (x)_is true if and only if_is true. (The 

meaning in case the blank is filled by a propositional form containing other 

variables besides x as free variables now follows bv the discussion of variables 
mr 

in §02, and may be supplied by the reader.) 

Likewise the existential quantifier is a simple operator for which we shall 

use the notation (3 ), filling the blank space with the operator variable and 

prefixing the whole to the operand. To take the particular operator variable 

x as an example, (3x)_is true if the value of_is truth for at least 

one value of x, and (3x)_is false if the value of_is falsehood for all 

values of x. Here again the blank is to be filled by a singulary propositional 

form containing x as a free variable. Or if as a special case we fill the blank 

with a sentence, then (3x)_ is true if and only if _ is true. 

In words, the notations “(x)” and “(3x)” may be read respectively as 

“for all x" (or “for ever)' x”) and “there is an x such that.” 

To illustrate the use of the universal and existential quantifiers, and in 

particular their iterated application, consider the binary propositional form, 

[*y > o], 
where x and y are real variables, i.e., variables whose range is the real 

numbers. This form expresses about two real numbers x and y that their 

product is positive, and thus it comes to express a particular proposition as 

soon as values are given to x and y. If we apply to it the existential quantifier 

with y as operator variable, we obtain the singulary propositional form, 

(3y)[xy >0], 

or as we may also write it, using the device (which we shall find frequently 

convenient later) of writing a heavy dot to stand for a bracket extending, 

from the place where the dot occurs, forward, 

(3y) . xy > 0. 

This singular)' form expresses about a real number x that there is some real 
number with which its product is positive; and it comes to express a partic¬ 

ular proposition as soon as a value is given to x. If we apply to it the uni- 
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versal quantifier with i as operator variable, we obtain the sentence. 

(x)(3y) mxy > 0. 

This sentence expresses the proposition that for every real number there is 

some real number such that the product of the two is positive. It must e 

distinguished from the sentence, 

(3y){x) .ry>0, 

expressing the proposition that there is a real number whose product with 

every real number is positive, though it happens that both are false.™ To 

bring out more sharply the difference which is made by the different order 

of the quantifiers, let us replace product by sum and consider the two 

sentences: 

(x)(3y) .X + y > 0 

(3y)(x) . x + y > 0 

Of these sentences, the first one is true and the second one false.102 

It should be informally clear to the reader that not both the universal and 

the existential quantifier are actually necessary in a formalized language, if 

negation is available. For it would be possible, in place of (3x)-, to 

write always ~[x)~_; or alternatively, in place of (x)-, to write 

always ~(3x)~_. And of course likewise with any other variable in place 

of the particular variable x. 

In most treatments the universal and existential quantifiers, one or both, 

l#,The single counterexample, of the value 0 for x. is of course sufficient to render the 

first sentence false. 
The reader is warned against saying that the sentence (x)(3y) .xy > 0 is "nearly 

always true'* or that it is "true with one exception" or the like. These expressions are 
appropriate rather to the propositional form (3y) . xy > 0, and of the sentence it must 
be said simply that it is false. 

l0,A somewhat more complex example of the difference made by the order in which 
the quantifiers are applied is found in the familiar distinction between continuity and 
uniform continuity. Using x and y as variables whose range is the real numbers, and t 

and 6 as variables whose range is the positive real numbers, we may express as follows 
that the real function / is continuous, on the class F of real numbers (assumed to be an 
open or a closed interval): 

(y)(c)(3(5)(x) . F(y) z> . F(x) =3 . |x - y| < <5 ZD . |/(x) — /(y)| < e 

And we may express as follows that / is uniformly continuous on F: 

(e)(3(5)(x)(y) . F(y) z> . F(x) => . \x - y| < 6 =3 . |/(x) - /(y)| < e 

To avoid complications that are not relevant to the point being illustrated, we have 
here assumed not only that the class F is an open or closed interval but also that the 
range of the function / is all real numbers. (A function with more restricted range may 
always have its range extended by some arbitrary assignment of values; and indeed it 
is a common simplifying device in the construction of a formalized language to restrict 
attention to functions having certain standard ranges (cf. footnote 19).) 
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are made fundamental, notations being provided for them directly in setting 

up a formalized language, and other quantifiers are explained in terms of 

them (in a way similar to that in which, as we have just seen in the preceding 

paragraph, the universal and existential quantifiers may be explained, either 

one in terms of the other). No definite or compelling reason can be given for 

such a preference of these two quantifiers above others that might equally 

be made fundamental. But it is often convenient. 

The application of one or more quantifiers to an operand (especially uni¬ 

versal and existential quantifiers) is spoken of as quantification.103 

Another quantifier is a singulary-binary quantifier for which we shall 

use the notation [_3_], with the operands in the two blanks, and 

the operator variable as a subscript after the sign 3. It may be explained by 

saying that [-3X_] is to mean the same as (x)[_3_], the 

two blanks being filled with two propositional forms or sentences, the same 

two in each case (and in the same order); and of course likewise with any 

other variable in place of the particular variable x. The name formal impli¬ 

cation,M is given to this quantifier—or to the associated binary propositional 

function, i.e., to an appropriate one of the two associated functions of (say) 

the form [F(t<) 3U G(k)], where u is a variable with some assigned range, 

and F and G are variables whose range is all classes (singulary propositional 

functions) that have a range coinciding with the range of u. 

Another quantifier is that which (or its associated propositional function) 

is called formal equivalence.,M For this we shall use the notation [_=_]. 

with the two operands in the two blanks, and the operator variable as a sub¬ 

script after the sign =. It may be explained by saying that [_=x_] 

is to mean the same as (x)[_=_], the two blanks being filled in each 

case with the two operands in order; and of course likewise with any other 

variable in place of x. 

We shall also make use of quantifiers similar in character to those just 

explained but having two or more operator variables. These (or their 

associated propositional functions) we call binary formal implication, binary 

formal equivalence, ternary formal implication, etc. E.g., binary formal im¬ 

plication may be explained by saying that [_I3XV_] is to mean the 

10,The use of quantifiers originated with Frege in 1879. And independently of Frege 
the same idea was introduced somewhat later by Mitchell and Peirce. (See the historical 
account in §49.) 

,04The names formal implicatiov and formal equivalence arc thoseusedby Whitehead 
and Russell in Principia Mathematica. and have become sufficiently well established 
that it seems best not to change them—though the adjective formal is perhaps not very 
well chosen, and must not be understood here in the same sense that we shall give 1 

elsewhere. 
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same as (*)(y)[_=>_.]. the two blanks being filled in each case with 

the two operands in order; and likewise with any two distinct variables in 

place of x and y as operator variables. Similarly binary formal equivalence 

r_=iv_], ternary formal implication [-=>*»*-]■ and so on- 

Besides the assertion of a sentence, as contemplated in §04. it is usual also 

to allow assertion of a propositional form, and to treat such an assertion as 

a particular fixed assertion (in spite of the presence of free variables in the 

expression asserted). This is common especially in mathematical contexts; 

where, for instance, the assertion of the equation sin (x 4- 2ti) = sin x may 

lM\Vith the aid of the notations that have now been explained, we may return to §00 
and rewrite the examples I-IV of that section as they might appear in some appropriate 

formalized language. T . . ^ 
For this purpose let a and b be variables whose range is human beings. Let t/bea 

variable whose range is words (taking, let us say for definiteness, any finite sequence of 
letters of the English alphabet as a word). Let B denote the relation of being a brother 
of. Let S denote the relation of having as surname. Let g and a denote the human beings 
Richard and Stanley respectively, and let r denote the word “Thompson.” Then the 
three premisses and the conclusion of I may be expressed as follows. 

B(a, b) =3a* . S(a. v) =9 S(b, v) 

B(g.o) 
S(a. r) 
S(q.t) 

Further, let z and w be variables whose range is complex numbers, and x a variable 
whose range is real numbers. Let R denote the relation of having real positive ratio, and 
let A denote the relation of having as amplitude. Then the premisses and conclusion 
of II may be expressed as follows: 

R(z, w) ZJn, . A (z. x) = * A (w, x) 

R(i - V3/3.aj) 
A (a>, 2*13) 

A (» - V3/3. 271/3) 

Here it is obvious that the relation of having real positive ratio is capable of being 
analyzed, so that instead of R(z,w) we might have written, e.g.: 

(3x)[x > 0)[z = xw) 

Likewise the relation of having as amplitude or (in I) the relation of being a brother of 
might have received some analysis. But these analyses are not relevant to the validity 
of the reasoning in these particular examples. And they are, moreover, in no way 
final or absolute; e.g., instead of analyzing the relation of having real positive ratio, we 
might with equal right take it as fundamental and analyze instead the relation of being 
greater than, in such a way that, in place of x > y would be written R(x — y. I). 

In the same way, for III and IV, we make no analysis of the singulary propositional 
functions of having a portrait seen by me. of having assassinated Abraham Lincoln, 
and of having invented the wheeled vehicle, but let them be denoted just by P. L and 
W respectively. Then if () denotes John Wilkes Booth, the premisses and conclusion of 
III may be expressed thus: 

ptf) HP) (3a)[P(a)L(a)] 
And the premisses and fallacious conclusion of IV thus: 

(3o)P(a) (3 a)W(a) (3a)[P(a) l^(a)] 

When so rewritten, the false appearance of analogy between III and IV disappears. 
It was due to the logically irregular feature of English grammar by which "somebody” 
is construed as a substantive. 3 
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be used as a means to assert this for all real numbers x; or the assertion of the 

inequality x2 -f y2 ^ 2xy jnay be used as a means to assert that for any real 

numbers x and y the sum of the squares is greater than or equal to twice the 

product. 

It is clear that, in a formalized language, if universal quantification is 

available, it is unnecessary to allow the assertion of expressions containing 

free variables. E.g., the assertion of the propositional form 

x2 + y2 ^ 2xy 

could be replaced by assertion of the sentence 

(x)(y) .x2 + y2 ^ 2xy. 

But on the other hand it is not possible to dispense with quantifiers in a 

formalized language merely by allowing the assertion of propositional forms, 

because, e.g., such assertions as that of 

~(x)(»/) . sin (x -f y) = sin x + sin y,106 

or that of 

(y)OI ^ ly|] =>*.x = o, 
could not be reproduced. 

Consequently it has been urged with some force that the device of assert¬ 

ing propositional forms constitutes an unnecessary duplication of ways of 

expressing the same thing, and ought to be eliminated from a formalized 

language.107 Nevertheless it appears that the retention of this device often 

facilitates the setting up of a formalized language by simplifying certain 

details; and it also renders more natural and obvious the separation of such 

restricted systems as propositional calculus (Chapter I) or functional cal¬ 

culus of first order (Chapter III) out from more comprehensive systems of 

which they are part. In the development which follows we shall therefore 

make free use of the assertion of propositional forms. However, in the case 

of such systems as functional calculus of order to (Chapter VI) or Zermelo set 

theory (Chapter XI), after a first treatment employing the device in question 

we shall sketch briefly a reformulation that avoids it. 

•••This assertion (which is correct, and must sometimes be made to beginners in 
trigonometry) is of course to be distinguished from the different (and erroneous) 
assertion of 

~ • sin (x + y) = sin x -f sin y. 

107The proposal to do this was made by Russell in his introduction to the second edi¬ 
tion of Principia Mathematica (1925). The elimination was actually carried out y 
Quine in his Mathematical Logic (1940), and simplifications of Quines method were 
effected in papers by F. B. Fitch and by G. D. W. Berry in The Journal of Symbolic 

Logic (vol. 6 (1941). pp. If-22. 23-27). 
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07. The logistic method. In order to set up a formalized language 

we must of course make use of a language already known to us, say English 

or some portion of the English language, stating in that language the vocab¬ 

ulary and rules of the formalized language. This procedure is analogous to 

that familiar to the reader in language study—as, e.g., in the use of a Latin 

grammar written in English108—but differs in the precision with which the 

rules are stated, in the avoidance of irregularities and exceptions, and in 

the leading idea that the rules of the language embody a theory or system of 

logical analysis (cf. §00). 

This device of employing one language in order to talk about another is 

one for which we shall have frequent occasion not only in setting up formal¬ 

ized languages but also in making theoretical statements as to what can be 

done in a formalized language, our interest in formalized languages being 

less often in their actual and practical use as languages than in the general 

theory of such use and in its possibilities in principle. Whenever we employ 

a language in order to talk about some language (itself or another109), we 

shall call the latter language the object language, and we shall call the 

former the meta-language.u0 

In setting up a formalized language we first employ as meta-language a 

certain portion of English. We shall not attempt to delimit precisely this 

portion of the English language, but describe it approximately by saying 

that it is just sufficient to enable us to give general directions for the manip- 

,0*It is worth remark in passing that this same procedure also enters into the learn¬ 
ing of a first language, being a necessary supplement to the method of learning by 
example and imitation. Some part of the language must first be learned approximately 
by the method of example and imitation; then this imprecisely known part of the lan¬ 
guage is applied in order to state rules of the language (and perhaps to correct initial 
misconceptions); then the known part of the language may be extended by further 
earning by example and imitation, and so on in alternate steps, until some precision 

in knowledge of the language is reached. 

There is no reason in principle why a first language, learned in this way. should not 
be one of the formalized languages of this book, instead of one of the natural languages. 
(But of course there is the practical reason that these formalized languages are ill 
adapted to purposes of facility of communication.) 

aJTThe e!nployment °f a lan8uaSe to talk about that same language is clearly not 
i7^r<?Pnate “ a m^thod of settin8 up a formalized language. But once set up, a formal- 

talk abSStthatk.™ adeq“at,C, means of exPressi°n may be capable of use in order to 
afte^rd,L 8e, and ‘n Part,cuIar the ver>’ setting up of the language may 

££?? restatemewnt ,n that language- Thus jt may haPP«-‘» that object 
to fakf mto ™count "* ““*• & situation which * will be .mportant liter 

d‘Sti?Ction ‘s due to David Hilbert, who, however, speaks of "Mathematik" 

language” and "meta 'AIetamathemat:ik'' (metamathematics) rather than "object 
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ulation of concrete physical objects (each instance or occurrence of one of 

the symbols of the language being such a concrete physical object, e.g., a 

mass of ink adhering to a bit of paper). It is thus a language which deals 

with matters of everyday human experience, going beyond such matters 

only in that no finite upper limit is imposed on the number of objects that 

may be involved in any particular case, or on the time that may be required 

for their manipulation according to instructions. Those additional portions of 

English are excluded which would be used in order to treat of infinite classes 

or of various like abstract objects which are an essential part of the subject 

matter of mathematics. 

Our procedure is not to define the new language merely by means of 

translations of its expressions (sentences, names, forms) into corresponding 

English expressions, because in this way it would hardly be possible to avoid 

carrying over into the new language the logically unsatisfactory features of 

the English language. Rather, we begin by setting up, in abstraction from 

all considerations of meaning, the purely formal part of the language, so 

obtaining an uninterpreted calculus or logistic system. In detail, this is done 

as follows. 

The vocabulary of the language is specified by listing the single symbols 

which are to be used.111 These are called the primitive symbols of the lan¬ 

guage,112 and are to be regarded as indivisible in the double sense that (A) in 

“‘Notice that we use the term "language” in such a sense that a given language has 
a given and uniquely determined vocabulary'. E.g., the introduction of one additiona 
symbol into the vocabulary is sufficient to produce a new and different language. (T us 
the English of 1849 is not the same language as the English of 1949. though it is con¬ 
venient to call them by the same name, and to distinguish, by specifying the date, on y 

in cases where the distinction is essential.) 
llfThe fourfold classification of the primitive notations of a formalized language 

into constants, variables, connectives, and operators is due in substance to J- • 
Neumann in the Maihematische Zeitschn/t, vol. 26 (1927), see pp. 4-6. He there a 
fifth category, composed of association-showing symbols such as parentheses 
brackets. Our terms "connective’’ and “operator” correspond to his Operation a 

“Abstraktion” respectively. . te- 
Though there is a possibility of notations not falling in any of von Neumann s ca 

gories, such have seldom been used, and for nearly all formalized languages a 
actually been proposed the von Neumann classification of primitive nota ions su • 
Many formalized languages have primitive notations of all four (or ^^e) *n s» , 

does not appear that this is indispensable, even for a language intended to a q 

for the expression of mathematical ideas generally. w*,imann 
As an interesting example of a (conceivable) notation not in any of the vo * , a 

categories, we mention the question of a notation by means of whic 
class would be formed an expression playing the role of a variable wit * 0f an 
range. Provision might perhaps be made for the formation from any c ^ 
infinite number of expressions playing the roles of different variables wi of 
their range. But these expressions would have to differ from var,^Jcs . :n 
§02 not only in being composite expressions rather than single s>m s 
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setting up the language no use is made of any division of them into parts 

and (B) any finite linear sequence of primitive symbols can be regarded in 

only one way as such a sequence of primitive symbols.113 A finite linear 

sequence of primitive symbols is called a formula. And among the formulas, 

rules are given by which certain ones are designated as well-formed formulas 

(with the intention, roughly speaking, that only the well-formed formulas 

are to be regarded as being genuinely expressions of the language).114 Then 

certain among the well-formed formulas are laid down as axioms. And 

finally (primitive) rules of inference (or rules of procedure) are laid down, 

rules according to which, from appropriate well-formed formulas as prem¬ 

isses, a well-formed formula is immediately inferred116 as conclusion. (So 

long as we are dealing only with a logistic system that remains uninterpreted, 

the terms premiss, immediately infer, conclusion have only such meaning as 

is conferred upon them by the rules of inference themselves.) 

A finite sequence of one or more well-formed formulas is called a proof if 

each of the well-formed formulas in the sequence either is an axiom or is 

immediately inferred from preceding well-formed formulas in the sequence 

by means of one of the rules of inference. A proof is called a proof of the last 

well-formed formula in the sequence, and the theorems of the logistic system 

possibility that the range might be empty. A language containing such a notation has 
never been set up and studied in detail and it is therefore not certain just what is feasible. 
(A suggestion which seems to be in this direction was made by Bcppo Levi in Universi- 

dad Nacional de Tucuman. Revista, ser. A vol. 3 no. 1 (1942), pp. 13-78.) 
The use in Chapter X of variables with subscripts indicating the range of the variable 

(the type) is not an example of a notation of the kind just described. For the variable, 
letter and subscript together, is always treated as a single primitive symbol. 

“In practice, condition (B) usually makes no difficulty. Though the (written) 
symbols adopted as primitive symbols may not all consist of a single connected piece, 
*t Is ordinarily possible to satisfy (B), if not otherwise, by providing that a sequence of 
Pr,PVtive symbols shall be written with spaces between the primitive symbols of fixed 
mdth and wider than the space at any place within a primitive symbol. 

The necessity for (B), and its possible failure, were brought out by a criticism by 
btamslaw LcSmewski against the paper of von Neumann cited in the preceding footnote, 
see von Neumann’s reply in Fundamenla Mathematicae. vol. 17 (1931), pp. 331-334 

r«//, / meWrSk‘S nnal,word in the matter in an offprint published in 1938 as from 
Ull?wfl L°Z'ca- V°I- 1 (cf- The Journal of Symbolic Logic, vol. 5, p. 83). 

Dressionc rnefSt/KlCti10n t0 °ne d,mension in combining the primitive symbols into ex- 
lan*ua8V,s convenient, and non-essential. Two-dimensional arrange- 

thevmav a V”d are ?m,I,ar csPecially in mathematical notations, but 
thy . y. a way? ** reduced to one dimension by a change of notation. In particular 

but teSiIS1 offtheedif?if?4,//#"Ar‘// rClieS heaV'ly °n a t'vo'd'mensional arrangement; 
else and hac ion d,f(lcu)ty of Pr,nt,n8 it this notation was never adopted by any one 

i«No g*Sinue ***“ reP,aced by a one-dimensional equivalent. 
We term theTnfer0 the ^0‘Calied ‘mmediate inferences of traditional logic is intended 

o7"fS:D‘ct!"“SH >in *!“ requir"8 °"'y application! a 
premiss. h tradlt,onal sense of (among other things) having only one 
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are those well-formed formulas of which proofs exist.116 As a special case, 

each axiom of the system is a theorem, that finite sequence being a proof 

which consists of a single well-formed formula, the axiom alone. 

The scheme just described—viz. the primitive symbols of a logistic 

system, the rules by which certain formulas are determined as well-formed 

(following Carnap let us call them the formation rules of the system), the 

rules of inference, and the axioms of the system—is called the primitive basis 

of the logistic system.117 

In defining a logistic system by laying down a primitive basis, we employ 

as meta-language the restricted portion of English described above. In ad¬ 

dition to this restriction, or perhaps better as part of it, we impose require¬ 

ments of effectiveness as follows: (I) the specification of the primitive sym¬ 

bols shall be effective in the sense that there is a method by which, whenever 

a symbol is given, it can always be determined effectively whether or not it 

is one of the primitive symbols; (II) the definition of a well-formed formula 

“•Following Carnap and others, we use the term “language*’ in such a sense that for 
any given language there is one fixed notion of a proof in that language. Thus the intro¬ 
duction of one additional axiom or rule of inference, or a change in an axiom or rule ol 
inference, is sufficient to produce a new and different language. 

(An alternative, which might be thought to accord better with the everyday use of 
the word “language,” would be to define a “language” as consisting of primitive sym¬ 
bols and a definition of well-formed formula, together with an interpretation (see below), 
and to take the axioms and rules of inference as constituting a “logic" for the language. 
Instead of speaking of an interpretation as sound or unsound for a logistic system (see 
below), we would then speak of a logic as being sound or unsound for a language. Indeed 
this alternative may have some considerations in its favor. But we reject it here, partly 
because of reluctance to change a terminology already fairly well established, parth 
because the alternative terminology leads to a twofold division in each of the subjects 
of syntax and semantics (§§08. 09)—according as they treat of the object language 
alone or of the object language together with a logic for it — which, especially in the 
case of semantics, seems unnatural, and of little use so far as can now be seen.) 

“’Besides these minimum essentials, the primitive basis may also include other 
notions introduced in order to use them in defining a well-formed formula or in sta mg 
the rules of inference. In particular the primitive symbols may be divided in some wa) 
into different categories: e.g., they may be classified as primitive constants, vanab es, 
and improper symbols, or various categories may be distinguished of primitive constan , 
of variables, or of improper symbols. The variables and the primitive constants toge er 
are usually called proper symbols. Rules may be given for distinguishing an occurrence 
of a variable in a well-formed formula as being a free occurrence or a bound occurrence, 

well-formed formulas being then classified as forms or constants according as they o or 

do not contain a free occurrence of a variable. Also rules may be given for distinguis mg 
certain of the forms as propositional forms, and certain of the constants as sen • 
In doing all this, the terminology often is so selected that, when the logistic sys e 
becomes a language by adoption of one of the intended principal interpretations [ 

below), the terms primitive constant, variable, improper symbol, proper symbo ,Jf • 
bound, form, constant, propositional form, sentence come to have meanings in ac 

with the informal semantical explanations of §§02-06. . 
The primitive basis of a formalized language, or interpreted logistic system, i 

tained by adding the semantical rules (see below) to the primitive basis o eg 

system. 
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shall be effective in the sense that there is a method by which, whenever a 

formula is given, it can always be determined effectively whether or not it 

is well-formed; (III) the specification of the axioms shall be effective in the 

sense that there is a method by which, whenever a well-formed formula is 

given, it can always be determined effectively whether or not it is one of 

the axioms; (IV) the rules of inference, taken together, shall be effective in 

the strong sense that there is a method by which, whenever a proposed 

immediate inference is given of one well-formed formula as conclusion from 

others as premisses, it can always be determined effectively whether or not 

this proposed immediate inference is in accordance with the rules of infer¬ 

ence. 

(From these requirements it follows that the notion of a proof is effective 

in the sense that there is a method by which, whenever a finite sequence of 

well-formed formulas is given, it can always be determined effectively 

whether or not it is a proof. But the notion of a theorem is not necessarily 

effective in the sense of existence of a method by which, whenever a well- 

formed formula is given, it can always be determined whether or not it is 

a theorem—for there may be no certain method by which we can always 

either find a proof or determine that none exists. This last is a point to which 

we shall return later.) 

As to requirement (I), we suppose that we are able always to determine 

about two given symbol-occurrences whether or not they are occurrences of 

the same symbol (thus ruling out by assumption such difficulties as that of 

illegibility). Therefore, if the number of primitive symbols is finite, the 

requirement may be satisfied just by giving the complete list of primitive 

symbols, written out in full. Frequently, however, the number of primitive 

symbols is infinite. In particular, if there are variables, it is desirable that 

there should be an infinite number of different variables of each kind 

because, although in any one well-formed formula the number of different 

variables is always finite, there is hardly a way to determine a finite upper 

limit of the number of different variables that may be required for some 

particular purpose in the actual use of the logistic system. When the number 

of primitive symbols is infinite, the list cannot be written out in full, but the 

primitive symbols must rather be fixed in some way by a statement of finite 

length in the meta-language. And this statement must be such as to conform 
to (I). 

A like remark applies to (III). If the number of axioms is finite, the re¬ 

quirement can be satisfied by writing them out in full. Otherwise the axioms 

must be specified in some less direct way by means of a statement of finite 
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length in the meta-language, and this must be such as to conform to (III). 

It may be thought more elegant or otherwise more satisfactory that the 

number of axioms be finite; but we shall see that it is sometimes convenient 

to make use of an infinite number of axioms, and no conclusive objections 

appear to doing so if requirements of effectiveness are obeyed. 

We have assumed the reader’s understanding of the general notion of 

effectiveness, and indeed it must be considered as an informally familiar 

mathematical notion, since it is involved in mathematical problems of a 

frequently occurring kind, namely, problems to find a method of computa¬ 

tion, i.e., a method by which to determine a number, or other thing, effec¬ 

tively.118 We shall not try to give here a rigorous definition of effectiveness, 

the informal notion being sufficient to enable us, in cases we shall meet, 

to distinguish given methods as effective or non-effective.118 

The requirements of effectiveness are (of course) not meant in the sense 

that a structure which is analogous to a logistic system except that it fails 

to satisfy these requirements may not be useful for some purposes or that 

it is forbidden to consider such—but only that a structure of this kind is 

unsuitable for use or interpretation as a language. For, however indefinite 

or imprecisely fixed the common idea of a language may be, it is at least 

fundamental to it that a language shall serve the purpose of communication. 

And to the extent that requirements of effectiveness fail, the purpose of 

communication is defeated. 

Consider, in particular, the situation which arises if the definition of well- 

n»A well-known example from topology is the problem (still unsolved even for ele¬ 
mentary manifolds of dimensionalities above 2) to find a method of calculating about 
any two closed simplicial manifolds, given by means of a set of incidence relations, 
whether or not they are homeomorphic—or, as it is often phrased, the problem to find 
a complete classification of such manifolds, or to find a complete set of invariants. 

As another example, Euclid’s algorithm, in the domain of rational integers, or in 
certain other integral domains, provides an effective method of calculating for any two 
elements of the domain their greatest common divisor (or highest common factor). 

In general, an effective method of calculating, especially if it consists of a sequence of 
steps with later steps depending on results of earlier ones, is called an algorithm. (This 
is the long established spelling of this word, and should be preserved in spite of any 
considerations of etymology.) 

n*For a discussion of the question and proposal of a rigorous definition see a paper by 
the present writer in the American Journal of Mathematics, vol. 68 (1936), pp. 346-363, 
especially §7 thereof. The notion of effectiveness may also be described by saying that 
an effective method of computation, or algorithm, is one for which it would be possible 
to build a computing machine. This idea is developed into a rigorous definition by A. M. 
Turing in the Proceedings o/ the London Mathematical Society, vol. 42 (1936-1937), 
pp. 230-265 (and vol. 43 (1937), pp. 544-546). See further: S. C. Kleene in the Mathe- 
matische Annalen, vol. 112 (1936), pp. 727-742; E. L. Post in The Journal of Symbolic 

Logic, vo! 1 (1936), pp. 103-105; A. M. Turing in The Journal of Symbolic Logic, vol. * 
(1937), p,\. 153-163; Hilbert and Bemays, Grundlagen der Mathematik, vol. 2 (1939), 

Supplement II. 
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formedness is non-effective. There is then no certain means by which, when 

an alleged expression of the language is uttered (spoken or written), say as 

an asserted sentence, the auditor (hearer or reader) may determine whether 

it is well-formed, and thus whether any actual assertion has been made.120 

Therefore the auditor may fairly demand a proof that the utterance is well- 

formed, and until such proof is provided may refuse to treat it as constituting 

an assertion. This proof, which must be added to the original utterance in 

order to establish its status, ought to be regarded, it seems, as part of the 

utterance, and the definition of well-formedness ought to be modified to 

provide this, or its equivalent. When such modification is made, no doubt 

the non-effectiveness of the definition will disappear ; otherwise it would be 

open to the auditor to make further demand for proof of well-formedness. 

Again, consider the situation which arises if the notion of a proof is non- 

effective. There is then no certain means by which, when a sequence of 

formulas has been put forward as a proof, the auditor may determine wheth¬ 

er it is in fact a proof. Therefore he may fairly demand a proof, in any 

given case, that the sequence of formulas put forward is a proof; and until 

this supplementary proof is provided, he may refuse to be convinced that the 

alleged theorem is proved. This supplementary proof ought to be regarded, 

it seems, as part of the whole proof of the theorem, and the primitive basis 

of the logistic system ought to be so modified as to provide this, or its 

equivalent.121 Indeed it is essential to the idea of a proof that, to any one 

who admits the presuppositions on which it is based, a proof carries final 

l*°To say that an assertion has been made if there is a meaning evades the issue 
unless an effective criterion is provided for the presence of meaning. An understanding 
of the language, however reached, must include effective ability to recognize meaning¬ 
fulness (in some appropriate sense), and in the purely formal aspect of the language, the 
logistic system, this appears as an effective criterion of well-formedness. 

‘“Perhaps at first sight it will be thought that the proof as so modified might con¬ 
sist of something more than merely a sequence of well-formed formulas. For instance 
there might be put in at various places indications in the meta-language as to which 
rule of inference justifies the inclusion of a particular formula as immediately inferred 
rom preceding formulas, or as to which preceding formulas are the premisses of the 

immediate inference. 

„®Uft “ a matter °f fact we consider this inadmissible. For our program is to express 

EIrtof WC theorems) ,n a fu,1y formalized object language, and as long as any 
be held£1°°* rem^"S m an ““formalized meta-language the logical analysis must 

- ■*- - :ti, 
set?D0Uthh,nK USf,a meta'lanLguaee to set “P the object language, we require that once 

support and ^ppi?mSSn ! ** an*ndep*ndent lang“*ge capable, without continued 
whiK it was des eed meta-language, of expressing those things for 
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conviction. And the requirements of effectiveness (l)-(IV) may be thought 

of as intended just to preserve this essential characteristic of proof. 

After setting up the logistic system as described, we still do not have a 

formalized language until an interpretation is provided. This will require a 

more extensive meta-language than the restricted portion of English used 

in setting up the logistic system. However, it will proceed not by translations 

of the well-formed formulas into English phrases but rather by semantical 

rules which, in general, use rather than mention English phrases (cf. §08), 

and which shall prescribe for every well-formed formula either how it 

denotes122 (so making it a proper name in the sense of §01) or else how it has 

values122 (so making it a form in the sense of §02). 

In view of our postulation of two truth-values (§04), we impose the re¬ 

quirement that the semantical rules, if they are to be said to provide an 

interpretation, must be such that the axioms denote truth-values (if they 

are names) or have always truth-values as values (if they are forms), and 

the same must hold of the conclusion of any immediate inference if it holds 

of the premisses. In using the formalized language, only those well-formed 

formulas shall be capable of being asserted which denote truth-values (if 

12,Because of the possibility of misunderstanding, we avoid the wordings "what it 

denotes" and "what values it has." 
For example, in one of the logistic systems of Chapter X we may find a well-formed 

formula which, under a principal interpretation of the system, is interpreted as denoting^ 
the greatest positive integer n such that 1 + nr is prime, r being chosen as the leas 
even positive integer corresponding to which there is such a greatest positive integer n. 
Thus the semantical rules do in a sense determine what this formula denotes, but the 
remoteness of this determination is measured by the difficulty of the mathematica 
problem which must be solved in order to identify in some more familiar manner t e 
positive integer which the formula denotes, or even to say whether or not the formu a 

denotes 1. . 
Again in the logistic system Flh of Chapter III (or A0 of Chapter V) taken wi * 

principal interpretation, there is a well-formed formula which, according to the seman 
tical rules, denotes the truth-value thereof that every even number greater than i 

the sum of two prime numbers. To say that the semantical rules determine wha 
formula denotes seems to anticipate the solution of a famous problem, and it m 
better to think of the rules as determining indirectly what the formula e*Pre ‘ 

In assigning how (rather than what) a name denotes we arc in effect fixing i s se 
and in assigning how a form has values we fix the correspondence of sense va u 
the form (see footnote 27) to concepts of values of its variables. (This statement o 
matter will be sufficiently precise for our present purposes, though it remains \ 5 
to the extent that we have left the meaning of "sense” uncertain see footno cs . ' 

It will be seen in particular examples below (such as rules a-g of §10, or * -s 
of §30. or rules a-f of §30) that in most of our semantical rules the explicit assert ^ 
that certain well-formed formulas, usually on certain conditions, are to aeno -s 
things or to have certain values. However, as just explained, this explicit ass ^ 
so chosen as to give implicitly also the sense or the sense values. No doub a u eX. 
ment of semantics must have additional rules stating the sense or the sense 
plicitly, but this would take us into territory still unexplored. 
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they are names) or have always truth-values as values (if they are forms); 

and only those shall be capable of being rightly asserted which denote truth 

(if they are names) or have always the value truth (if they are forms). Since 

it is intended that proof of a theorem shall justify its assertion, we call an 

interpretation of a logistic system sound if, under it. all the axioms either 

denote truth or have always the value truth, and if further the same thing 

holds of the conclusion of any immediate inference if it holds of the premisses. 

In the contrary case we call the interpretation unsound. A formalized lan¬ 

guage is called sound or unsound according as the interpretation by which 

it is obtained from a logistic system is sound or unsound. And an unsound 

interpretation or an unsound language is to be rejected. 

(The requirements, and the definition of soundness, in the foregoing para¬ 

graph are based on two truth-values. They are satisfactory for every formal¬ 

ized language which will receive substantial consideration in this book. 

But they must be modified correspondingly, in case the scheme of two truth- 

values is modified—cf. the remark in §19.) 

The semantical rules must in the first instance be stated in a presupposed 

and therefore unformalized meta-language, here taken to be ordinary 

English. Subsequently, for their more exact study, we may formalize the 

meta-language (using a presupposed meta-meta-language and following the 

method already described for formalizing the object language) and restate 

the semantical rules in this formalized language. (This leads to the subject 

of semantics (§09).) 

As a condition of rigor, we require that the proof of a theorem (of the ob¬ 

ject language) shall make no reference to or use of any interpretation, but 

shall proceed purely by the rules of the logistic system, i.e., shall be a proof 

in the sense defined above for logistic systems. Motivation for this is three¬ 

fold, three rather different approaches issuing in the same criterion. In the 

first place this may be considered a more precise formulation of the tradi¬ 

tional distinction between form and matter (§00) and of the principle that 

the validity of an argument depends only on the form—the form of a 

proof in a logistic system being thought of as something common to its 

meanings under various interpretations of the logistic system. In the second 

place this represents the standard mathematical requirement of rigor that 

a proof must proceed purely from the axioms without use of anything 

(however supposedly obvious) which is not stated in the axioms; but this 

requirement is here modified and extended as follows: that a proof must 

proceed purely from the axioms by the rules of inference, without use of 

anything not stated in the axioms or any method of inference not validated 
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by the rules. Thirdly there is the motivation that the logistic system is 

relatively secure and definite, as compared to interpretations which we may 

wish to adopt, since it is based on a portion of English as meta-language so 

elementary and restricted that its essential reliability can hardly be doubted 

if mathematics is to be possible at all. 

It is also important that a proof which satisfies our foregoing condition 

of rigor must then hold under any interpretation of the logistic system, so 

that there is a resulting economy in proving many things under one pro¬ 

cess.123 The extent of the economy is just this, that proofs identical in form 

but different in matter need not be repeated indefinitely but may be sum¬ 

marized once for all.124 

Though retaining our freedom to employ any interpretation that may be 

found useful, we shall indicate, for logistic systems set up in the following 

chapters, one or more interpretations which we have especially in mind for 

the system and which shall be called the principal interpretations. 

The subject of formal logic, when treated by the method of setting up a 

formalized language, is called symbolic logic, or mathematical logic, or logistic?* 

The method itself we shall call the logistic method. 

“’This remark has now long been familiar in connection with the axiomatic method 
in mathematics (see below). 

“‘The summarizing of a proof according to its form may indeed be represented to a 
certain extent, by the use of variables, within one particular formalized language. 
But, because of restricted ranges of the variables, such summarizing is less comprehen¬ 
sive in its scope than is obtained by formalizing in a logistic system whose interpretation 

is left open. 
The procedure of formalizing a proof in a logistic system and then employing the 

formalized proof under various different interpretations of the system may be thought 
of as a mere device for brevity and convenience of presentation, since it would be pos¬ 
sible instead to repeat the proof in full each time it were used with a new interpretation. 
From this point of view such use of the meta-language may be allowed as being m 
principle dispensable and therefore not violating the demand (footnote 121) for an in¬ 

dependent object language. . 
(If on the other hand we wish to deal rigorously with the notion of logical form o 

proofs, this must be in a particular formalized language, namely a formalized roe - 
language of the language of the proofs. Under the program of §02 each variable of t s 
meta-language will have a fixed range assigned in advance, according, perhaps, with the 
theory of types. And the notion of form which is dealt with must therefore be cor¬ 
respondingly restricted, it would seem, to proofs of a fixed class, taking no ac'J?“nt °. 
sameness of form between proofs of this class and others (in the same or a differen 
language). Presumably our informal references to logical form in the text are o 
modified in this way before they can be made rigorous—cf. §09.) 

mThe writer prefers the term "mathematical logic,” understood as meaning log 
treated by the mathematical method, especially the formal axiomatic or logistic 
But both this term and the term "symbolic logic” are often applied also> to lope 

treated by a less fully formalized mathematical method, in particular to the » 
of logic,” which had its beginning in the publications of George Boole and-"“^, •- 
De Morgan in 1847, and received a comprehensive treatment in Ernst bcQr(r ,. 
Vorlesungen iiber die Algebra der Logik (1890-1905). The term "logistic" is more ae 
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Familiar in mathematics is the axiomatic method, according to which a 

branch of mathematics begins with a list of undefined terms and a list of 

assumptions, or postulates involving these terms, and the theorems are to 

be derived from the postulates by the methods of formal logic.1*8 If the last 

phrase is left unanalyzed, formal logic being presupposed as already known, 

we shall say that the development is by the informal axiomatic method.111 

And in the opposite case we shall speak of the formal axiomatic method. 

The formal axiomatic method thus differs from the logistic method only 

in the following two ways: 

(1) In the logistic system the primitive symbols are given in two cate¬ 

gories: the logical primitive symbols, thought of as pertaining to the under¬ 

lying logic, and the undefined terms, thought of as pertaining to the particular 

branch of mathematics. Correspondingly the axioms are divided into two 

categories: the logical axioms, which are well-formed formulas containing 

only logical primitive symbols, and the postulates,129 which involve also 

the undefined terms and are thought of as determining the special branch of 

mathematics. The rules of inference, to accord with the usual conception of 

nitcly restricted to the method described in this section, and has also the advantage that 
it is more easily made an adjective. (Sometimes “logistic” has been used with special 
reference to the school of Russell or to the Fregc-Russell doctrine that mathematics 
is a branch of logic—cf. footnote 545. But we shall follow the more common usage 
which attaches no such special meaning to this word.) 

Logica mathcmatica” and “logistica” were both used by G. W. v. Leibniz along 
with calculus ratiocinator,” and many other synonyms, for the calculus of reasoning 
which he proposed but never developed beyond some brief and inadequate (though 
significant) fragments. Boole used the expressions “mathematical analysis of logic,” 

mathematical theory of logic." “Mathematische Logik” was used by Schrbder in 
1877, 'mat6mati66skaA logika” (Russian) by Platon Poretsky in 1884, "logica matema- 
t,ca. (Ital,an) by Giuseppe Peano in 1891. "Symbolic logic" seems to have been first 
used by John Venn (in The Princeton Review. 1880), though Boole speaks of "sym- 

**'ason*n8- The word logistic” and its analogues in other languages originally 
meant the art of calculation or common arithmetic. Its modern use for mathematical 
logic dates from the International Congress of Philosophy of 1904, where it was proposed 

Yrb i ^lande- and Couturat. Other terms found in the literature 
1805 ^Sr,riCalC’l i (9^roed,P,OUCquet 1700). “algorithme logique” (G. F. Castillon 

“SnnJL'° l0g1.? „(B2°le 1847)' "calculus of inference" (De Morgan 1847), 
“tSetiiS hmil"U?» i(i R' L‘ Delboeuf 1870)> "Logikkalkul" (Schrbder 1877), 

theoretische U)gik Hilbert and Ackermann 1928). Also “Boole's logical algebra” 

{5LS: 1870)' l°*'V** alg^bnque de Boole” (Louis Liard 1877), "algebra of 

texttookTa^dotWr me\hod may °l course be found in many mathematical 
toVcblen^nd'^Yonnp's 'p111011,5 A" good exposition is in the Introduction 

iriTK °d Y°“ng S Pr<>1*ctive Geometry, vol. 1 (1910). 

but arenot snec^ic^lv °JhT^ matheraatical treatises. which proceed axiomatically 
footnote). P y ^ log,c~1D Particular of Veblen and Young (preceding 

^ «th.r ^ synon- 



58 INTRODUCTION 

the axiomatic method, must all be taken as belonging to the underlying 

logic. And, though they may make reference to particular undefined 

terms or to classes of primitive symbols which include undefined terms, 

they must not involve anything which, subjectively, we are unwilling to 

assign to the underlying logic rather than to the special branch of mathe¬ 

matics.129 

(2) In the interpretation the semantical rules are given in two categories. 

Those of the first category fix those general aspects of the interpretation 

which may be assigned, or which we are willing to assign, to the underlying 

logic. And the rules of the second category determine the remainder of the 

interpretation. The consideration of different representations or interpre¬ 

tations of the system of postulates, in the sense of the informal axiomatic 

method, corresponds here to varying the semantical rules of the second 

category while those of the first category remain fixed. 

08. Syntax. The study of the purely formal part of a formalized language 

in abstraction from the interpretation, i.e., of the logistic system, is called 

syntax, or, to distinguish it from the narrower sense of "syntax” as con¬ 

cerned with the formation rules alone,150 logical syntax.131 The meta-language 

used in order to study the logistic system in this way is called the syntax 

language.131 

We shall distinguish between elementary syntax and theoretical syntax. 

The elementary syntax of a language is concerned with setting up the 

logistic system and with the verification of particular well-formed formulas, 

‘"Ordinarily, e.g., it would be allowed that the rules of inference should treat differ¬ 
ently two undefined terms intended one to denote an individual and one to denote a 
class of individuals, or two undefined terms intended to denote a class of individuals 
and a relation between individuals; but not that the rules should treat differently two 
undefined terms intended both to denote a class of individuals. But no definitive con¬ 

trolling principle can be given. . . __ 
The subjective and essentially arbitrary character of the distinction between wn 

pertains to the underlying logic and what to the special branch of mathematics.is:mu 

trated by the uncertainty which sometimes arises, in treating a branch of matnema 
by the informal axiomatic method, as to whether the sign of equality >s to W. cons a 
as an undefined term (for which it is necessary to state postulates). Again i *s 1 vt\ 
by Zermelo’s treatment of axiomatic set theory in his paper of 1908 (cf. Chap / 
in which, following the informal axiomatic method, he introduces the rela 
membership in a set as an undefined term, though this same relation is u y nnaj 
to the underlying logic when a branch of mathematics is develope y 

axiomatic method. 
footnote 116. . _ . ctrans- 

‘“The terminology is due to Carnap in his Logische Syntax der Spfaehe[ *). 

lated into English (with some additions) as The Logical Syn/ox o/Z^^^ O ju in 

connection with this book see also reviews of it: by Saunders |^ jOeene 
0/ the American Mathematical Society, vol. 44 (1938), PP-«1-178. and by b. c. 

in The Journal of Symbolic Logic, vol. 4 (1939), pp. 82-87. 
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axioms, immediate inferences, and proofs as being such. The syntax language 

is the restricted portion of English which was described in the foregoing 

section, or a correspondingly restricted formalized meta-language, and the 

requirements of effectiveness, (I)—(IV). must be observed. The demonstra¬ 

tion of derived rules and theorem schemata, in the sense of §§12, 33, and 

their application in particular cases are also considered to belong to ele¬ 

mentary syntax, provided that the requirement of effectiveness holds which 

is explained in §12. 

Theoretical syntax, on the other hand, is the general mathematical theory 

of a logistic system or systems and is concerned with all the consequences of 

their formal structure (in abstraction from the interpretation). There is no 

restriction imposed as to what is available in the syntax language, and re¬ 

quirements of effectiveness are or may be abandoned. Indeed the syntax 

language may be capable of expressing the whole of extant mathematics. But 

it may also sometimes be desirable to use a weaker syntax language in order 

to exhibit results as obtained on this weaker basis. 

Like any branch of mathematics, theoretical syntax may, and ultimately 

must, be studied by the axiomatic method. Here the informal and the formal 

axiomatic method share the important advantage that the particular 

character of the symbols and formulas of the object language, as marks upon 

paper, sounds, or the like, is abstracted from, and the pure theory of the 

structure of the logistic system is developed. But the formal axiomatic 

method—the syntax language being itself formalized according to the pro¬ 

gram of §07. by employing a meta-meta-language—has the additional ad¬ 

vantage of exhibiting more definitely the basis on which results are obtained, 

and of clarifying the way and the extent to which certain results may be 

obtained on a relatively weaker basis. 

In this book we shall be concerned with the task of formalizing an object 

language, and theoretical syntax will be treated informally, presupposing 

m any connection such general knowledge of mathematics as is necessary 

for the work at hand. Thus we do not apply even the informal axiomatic 

method to our treatment of syntax. But the reader must always understand 

that syntactical discussions are carried out in a syntax language whose for¬ 

malization is ultimately contemplated, and distinctions based upon such 

formalization may be relevant to the discussion. 

In such informal development of syntax, we shall think of the syntax 

wSlv35 “ langUage fr°m the obiect W-age. But ‘be 
Poss.bU.ty * important that a sutficiently adequate object language may be 

capable of expressing its own syntax, so that in this case the^ltLTfo. 
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malization of the syntax language may if desired consist in identifying it 

with the object language.132 

We shall distinguish between theorems of the object language and theo 

rems of the syntax language (which often are theorems about the object 

language) by calling the latter syntactical theorems. Though we demonstrate 

syntactical theorems informally, it is contemplated that the ultimate formal¬ 

ization of the syntax language shall make them theorems in the sense of §07, 

i.e., theorems of the syntax language in the same sense as that in which we 

speak of theorems of the object language. 

We shall require, as belonging to the syntax language: first, names of the 

various symbols and formulas of the object language; and secondly, vari¬ 

ables which have these symbols and formulas as their values. The former 

will be called syntactical constants, and the latter, syntactical variables.133 

As syntactical variables we shall use the following: as variables whose 

range is the primitive symbols of the object language, bold Greek small 

letters (a, (3, y, etc.); as variables whose range is the primitive constants and 

variables of the object language—see footnote 117—bold roman small 

letters (a, b, c, etc.); as variables whose range is the formulas of the object 

language, bold Greek capitals (I\ A, etc.); and as variables whose range is 

the well-formed formulas of the object language, bold roman capitals (A, 

B, C, etc.). Wherever these bold letters are used in the following chapters 

the reader must bear in mind that they are not part of the symbolic appara¬ 

tus of the object language but that they belong to the syntax language 

and serve the purpose of talking about the object language. In use of the 

object language as an independent language, bold letters do not appear 

(just as English words never appear in the pure text of a Latin author 

though they do appear in a Latin grammar written in English). 

As a preliminary to explaining the device to which we resort for syntac¬ 

tical constants, it is desirable first to consider the situation in ordinan 

»**Cf. lootnote 109. In particular the developments of Chapter VIII show that the 
logistic system of Chapter VII is capable of expressing its own syntax if given a suitable 
interpretation different from the principal interpretation of Chapter VII. namely, an 
interpretation in which the symbols and formulas of the logistic system itsel are coun 
among the individuals, as well as all finite sequences of such formulas, and the <uncU°“a 
constant S is given an appropriate (quite complicated) interpretation, de i ° * . 
may be made out by following the scheme of Godel numbers that is set forth in Chapter 

»«Given the apparatus of syntactical variables, we could actually avo,dJJ* ““. 
syntactical constants by resorting to appropriate circumlocutions in cases > > 
tactical constants would otherwise seem to be demanded. Indeed the example of the 
preceding footnote illustrates this, as will become clear in connection w i Cl q[ 

chapters. But it is more natural and convenient, especially in an informa 
syntax, to allow free use of syntactical constants. 
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English, with no formalized object language specially in question. We must 

take into account the fact that English is not a formalized language and the 

consequent uncertainty as to what are its formation rules, rules of inference, 

and semantical rules, the contents of ordinary English grammars and dic¬ 

tionaries providing only some incomplete and rather vague approximations 

to such rules. But, with such reservations as this remark implies, we go on to 

consider the use of English in making syntactical statements about the 

English language itself. 

Frequently found in practice is the use of English words autonymously (to 

adopt a terminology due to Carnap), i.e., as names of those same words.134 

Examples are such statements as “The second letter of man is a vowel,” 

“Man is monosyllabic,” “Man is a noun with an irregular plural.” Of course 

it is equivocal to use the same word, man, both as a proper name of the 

English word which is spelled by the thirteenth, first, fourteenth letters of 

the alphabet in that order, and as a common name (see footnote 6) of 

featherless plantigrade biped mammals135—but an equivocacy which, like 

many others in the natural languages, is often both convenient and harmless. 

Whenever there would otherwise be real doubt of the meaning, it may be 

removed by the use of added words in the sentence, or by the use of quotation 

marks, or of italics, as in: “The word man is monosyllabic”; “ 'Man' is 

monosyllabic”; “Man is monosyllabic.” 

Following the convenient and natural phraseology of Quine, we may 

distinguish between use and mention of a word or symbol. In “Man is a 

rational animal” the word “man” is used but not mentioned. In “The Eng¬ 

lish translation of the French word homme has three letters” the word “man” 

is mentioned but not used. In “Man is a monosyllable" the word “man” is 

both mentioned and used, though used in an anomalous manner, namely 
autonymously. 

Frege introduced the device of systematically indicating autonymy by 

quotation marks, and in his later publications (though not in the Begriffs- 

schrift) words and symbols used autonymously are enclosed in single quota¬ 

tion marks in all cases. This has the effect that a word enclosed in single 

terminol°8y of the Scholastics, use of a word as a name of itself, i.e. to de- 
- , f “ a vvord* was called suppositio materialis. Opposed to this as sut>t>ositio 

zsz&szzr,n ,ts pr°p"or °rdi">rp ~ 
to’S'uS" M ottj.m51“to ZtUT0S'li<m,S “C Cnmbrous' “”d uncertain, 
peculiarities and inS2ri{£l of * ~ maUriali> a"d A™alis, refer to 

lavages 

lo follow a definition found in The Century Dictionary. 
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quotation marks is to be treated as a different word from that without the 

quotation marks—as if the quotation marks were two additional letters in 

the spelling of the word—and equivocacy is thus removed by providing two 

different words to correspond to the different meanings. Many recent writers 

follow Frege in this systematic use of quotation marks, some using double 

quotation marks in this way, and others following Frege in using single 

quotation marks for the purpose, in order to reserve double quotation marks 

for their regular use as punctuation. As the reader has long since observed, 

Frege’s systematic use of quotation marks is not adopted in this book.136 

But we may employ quotation marks or other devices from time to time, 

especially in cases in which there might otherwise be real doubt of the 

meaning. 

To return to the question of syntactical constants for use in developing the 

syntax of a formalized object language, we find that there is in this case 

‘‘‘Besides being rather awkward in practice, such systematic use of quotation marks 
is open to some unfortunate abuses and misunderstandings. One of these is the misuse 
of quotation marks as if they denoted a function from things (of some category) to 
names of such things, or as if such a function might be employed at all without some 
more definite account of it. Related to this is the temptation to use in the role of a 
syntactical variable the expression obtained by enclosing a variable of an object lan¬ 
guage in quotation marks, though such an expression, correctly used, is not a variable 

of any kind, and not a form but a constant. 
Also not uncommon is the false impression that trivial or self-evident propositions 

are expressed in such statements as the following: ‘ "Snow is white' is true if and only 
if snow is white' (Tarski’s example); * 'Snow is white’ means that snow is white ; 

' ‘Cape Town' is the [or a] name of Cape Town.’ . . 
This last misunderstanding may arise also in connection with autonymy. A useiu 

method of combatting it is that of translation into another language (cf. a remark y 
C. H. Langford in The Journal of Symbolic Logic, vol. 2 (1937), p. 53). For exanlPle’ 
the proposition that 'Cape Town' is the name of Cape Town would be conveyed tnus 
to an Italian (whom we may suppose to have no knowledge of English): Cape ow 
b il nome di Citti del Capo.’ Assuming, as we may, that the Italian words have exact y 
the same sense as the English words of which we use them as translations—in particular 

that 'CittA del Capo' has the same sense as ‘Cape Town' and that ^P6 J.°WF h h 
the same sense in Italian as in English—we see that the Italian sentence and its tng sn 
translation must express the very same proposition, which can no more be a 

when conveyed in one language than it can in another. . a that 
The foregoing example may be clarified by recalling the remark of footn° 

the name relation is properly a ternary relation, and may be reduced to ***_ 
lation only by fixing the language in a particular context. Thus we have , dd 
plicit English sentences: ' 'Cape Town’ is the English name of Cape Town ■ i*. 6 
Capo’ is the Italian name of Cape Town.' The Italian translations are. P . 
il nome inglese di C.tta del Capo';' 'Citti del Capo 6 ,1 nome i^iano di CitU del Caf^ 
Of the two propositions in question, the first one has a false of bQ Italian; 
when expressed in English, the illusion being dispelled °n English, 
the second one contrariwise does not seem obvious or trivial wh p 
but on translation into Italian acquires the appearance o mg so. svste- 

(In the three preced.ng paragraphs of this 
matic use of single quotation marks, and the paragraphs a 
standing. As explained, we do not follow this usage elsewhere.) 
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nothing equivocal in using the symbols and formulas of the object language 

autonymously in the syntax language, provided that care is taken that no 

formula of the object language is also a formula of the syntax language in 

any other wise than as an autonym. Therefore we adopt the following 

practice: 

The primitive symbols of the object language will be used in the syntax 

language as names of themselves, and juxtaposition will be used for juxta¬ 

position.137 

This is the ordinary usage in mathematical writing, and has the advantage 

of being self-explanatory. Though we employ it only informally, it is also 

readily adapted to incorporation in a formalized syntax language138 (and in 

fact more so than the convention of quotation marks). 

As a precaution against equivocation, we shall hereafter avoid the 

practice—which might otherwise sometimes be convenient—of borrowing 

formulas of the object language for use in the syntax language (or other 

meta-language) with the same meaning that they have in the object 

language. Thus in all cases where a single symbol or a formula of 

the object language is found as a constituent in an English sentence, 

it is to be understood in accordance with the italicized rule above, i.e., 

autonymously. 

Since we shall later often introduce conventions for abbreviating well- 

formed formulas of an object language, some additional explanations will 

be necessary concerning the use of syntactical variables and syntactical 

constants (and concerning autonymy) in connection with such abbreviations. 

These will be indicated in §11, where such abbreviations first appear. But, 

as explained in that section, the abbreviations themselves and therefore 

any special usages in connection with them are dispensable in principle, 

however necessary practically. In theoretical discussions of syntax and in 

particular in formalizing the syntax language, the matter of abbreviations 

of well-formed formulas may be ignored. 

the Wil1 be USed in ^ syntax *an8uage as a binary connective having 
SticTi, needed )"XtahP°S'tKm “ ,its “s“i*ted Technically, some added J- 
tation ‘S needed to show association, or some convention about the matter such as 

^ uX^u0TZthe left §,!1)-But in pfactice-becauseof the -S? 
iM-r?*^>S,t,0n' there ,s no difficulty in this respect. 7 

Snag^oS l“Ub^,Ta»^UmPti°° tha' 'h<! SyDt“ 'ang“aSe “ * 

xlSZSsSSSFt- “ ■srvssa 
nSfon! ,Te)Var,ib" 'VfZXZSSZ 
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09. Semantics. Let us imagine the users of a formalized language, 

say a written language, engaged in writing down well-formed formulas of 

the language, and in assembling sequences of formulas which constitute 

chains of immediate inferences or, in particular, proofs. And let us imagine 

an observer of this activity who not only does not understand the language 

but refuses to believe that it is a language, i.e., that the formulas have 

meanings. He recognizes, let us say, the syntactical criteria by which for¬ 

mulas are accepted as well-formed, and those by which sequences of well- 

formed formulas are accepted as immediate inferences or as proofs; but he 

supposes that the activity is merely a game—analogous to a game of chess 

or, better, to a chess problem or a game of solitaire at cards—the point of 

the game being to discover unexpected theorems or ingenious chains of 

inferences, and to solve puzzles as to whether and how some given formula 

can be proved or can be inferred from other given formulas.139 

To this observer the symbols have only such meaning as is given to them 

by the rules of the game—only such meaning as belongs, for example, to 

the various pieces at chess. A formula is for him like a position on a chess¬ 

board, significant only as a step in the game, which leads in accordance 

with the rules to various other steps. 

All those things about the language which can be said to and understood 

by such an observer while he continues 10 regard the use of the language as 

merely a game constitute the (theoretical) syntax of the language. But those 

things which are intelligible only through an understanding that the well- 

formed formulas have meaning in the proper sense, e.g., that certain of them 

express propositions or that they denote or have values in certain ways, 

belong to the semantics of the language. 

Thus the study of the interpretation of the language as an interpretation 

is called semantics.uo The name is applied especially when the treatment is 

»*»A comparison of the rules of ar.thmctic to those of a game of chess was^mad > 
J. Thomae (1898) and figures in the controversy between Thomae \ 

1908). The same comparison was used by Hermann Weyl (19-4) ,n ®r language. 
Hilbert's program of metamathematics or syntax of a mathematical o J ‘ 8 r jn 

140The name (or its analogue in Polish) was introduced by Tarski ••Gr^ndlc- 
Przegl^d Filozo/iczny, vol. 39 (1936), pp. 50-5?. translated mtc German.fo 

gung der wissenschaftlichen Semantik” in Actes du Congris Inte Tarski's 
Scienti/ique (1936). Other important publications in the fidd of seman 1 1 ’ted into 

Pcj,cit Prawdy i J'yykack Sauk DedukcyinychOW. deTforoa- 
German (and an important appendix added) as Der^\\ahr t ^ and Carnap's 
lisierten Sprachen" in Studia Philosophica. vol. 1 (193 )PP_ - - ’b thc present 
Introduction to Semantics (1942). Concerning Carnap s book sec a revie > P 

writer in The Philosophical Review, vol. 52 (1943). pp. -• ,, than that in 
Thc word semantics has various other meanings, most of them * this book 

question here. Care must be taken to avoid confusionon tls^C^ { substantially 
the word will have always the one meaning, intended to be the san t 
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in a formalized meta-language. But in this book we shall not go beyond some 

unformalized semantical discussion, in ordinary English. 
Theorems of the semantical meta-language will be called semantical theo¬ 

rems, and both semantical and syntactical theorems will be called metatheo¬ 

rems, in order to distinguish them from theorems of the object language. 

As appears from the work of Tarski, there is a sense in which semantics 

can be reduced to syntax. Tarski has emphasized especially the possibility 

of finding, for a given formalized language, a purely syntactical property 

of the well-formed formulas which coincides in extension with the semantical 

property of being a true sentence. And in Tarski's Wahrheitsbegriff1*1 the prob¬ 

lem of finding such a syntactical property is solved for various particular 

formalized languages.142 But like methods apply to the two semantical con¬ 

cepts of denoting and having values, so that syntactical concepts may be found 
which coincide with them in extension.143 Therefore, if names expressing 

so) as that in which it is used by Tarski. C. \V. Morris (Foundations of the Theory of 
Signs, 1938). Carnap, G. D. \V. Berry (Harvard University. Summaries o/ Theses 1942, 
pp. 330-334). 

I4lCited in the preceding footnote. 
urrarski solves also, for various particular formalized languages, the problem of 

finding a syntactical relation which coincides in extension with the semantical relation 
of satisfying a propositional form. 

In a paper published in Monatshe/te fur Mathematik und Physik, vol. 42, no. 1 (1935), 
therefore later than Tarski’s Pojecie Prawdy but earlier than the German translation 
and its appendix, Carnap also solves both problems (of finding syntactical equivalents 
of being a true sentence and of satisfying a propositional form) for a particular formal¬ 
ized language and in fact for a stronger language than any for which this had previously 
been done by Tarski. Carnap's procedure can be simplified in the light of Tarski’s 
appendix or as suggested by Klcene in his review cited in footnote 131. 

On the theory of meaning which we are here adopting, the semantical concepts of 
being a true sentence and of satisfying a propositional form are reducible to those of 
denoting and having values, and these results of Tarski and Carnap are therefore 
implicit in the statement of the following footnote. 

luMore explicitly, this may be done as follows. In §07, in discussing the semantical 
rules of a formalized language, we thought of the concepts of denoting and of having 
values as being known in advance, and we used the semantical rules for the purpose 
of giving meaning to the previously uninterpreted logistic system. But instead of this it 
would be possible to give no meaning in advance to the words “denote” and “have 
values as they occur in the semantical rules, and then to regard the semantical rules, 
taken together, as constituting definitions of “denote” and “have values” (in the same 

formatlon rules of a logistic system constitute a definition of “well- 
ormed ) The concepts expressed by “denote” and “have values” as thus defined 
^ ong to theoretical syntax, nothing semantical having been used in their definition. 

values^ 7* e*tens,°" w,,th *he semantical concepts of denoting and having 
•n?3' as applied to the particular formalized language. 

exDeceteSdUtoth°anvray ** dari!jed by recall,nK that a particular logistic system may be 
of dTnotoUoiand^^ lnt,t;rPrCtatlonS- leadinS to many different assignments 
and^luestofh, ,T ^,Wellf°rmed formulas. These assignments of denotations 

Sattheift ~213'k'1[°rmeVTlasmty h* madc as abstract correspondences, so 
inat tneir treatment belongs to theoretical syntax. Semantics begins when we decide 

ystem. fhe distinction between semantics and syntax is found in the different signif- 
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these two concepts are the only specifically semantical (non-syntactical) 

primitive symbols of a semantical meta-language, it is possible to transform 

the semantical meta-language into a syntax language by a change of inter¬ 

pretation which consists only in altering the sense of those names without 

changing their denotations. 

However, a sound syntax language capable of expressing such syntactical 

equivalents of the semantical concepts of denoting and having values—or 

even only a syntactical equivalent of the semantical property of truth- 

must ordinarily be stronger than the object language (assumed sound), in 

the sense that there will be theorems of the syntax language of which no 

translation (i.e., sentence expressing the same proposition) is a theorem of 

the object language. Else there will be simple elementary propositions about 

the semantical concepts such that the sentences expressing the correspond¬ 

ing propositions about the syntactical equivalents of the semantical con¬ 

cepts are not theorems of the syntax language.144 

For various particular formalized languages this was proved (in effect) 

by Tarski in his Wahrheitsbegriff. And Tarski’s methods145 are such that they 

can be applied to obtain the same result in many other cases—in particular 

in the case of each of the object languages studied in this book, when a 

formalized syntax language of it is set up in a straightforward manner. No 

doubt Tarski’s result is capable of precise formulation and proof as a result 

about a very general class of languages, but we shall not attempt this. 

The significance of Tarski’s result should be noticed as it affects the ques¬ 

tion of the use of a formalized language as semantical meta-language of 

itself. A sound and sufficiently adequate language may indeed be capable 

icance given to one particular interpretation and to its assignment of denotations a 
values to the well-formed formulas; but within the domain of formal logic, me u > 8 
pure syntax and pure semantics, nothing can be said about this different signi ica 

except to postulate it as different. rtjon 

Many similar situations are familiar in mathematics. For instance, the ai 
between plane Euclidean metric geometry and plane projective geometry may . 
in the different significance given to one particular straight line and one pa 
elliptic involution on it. And it seems not unjustified to say that the sense i 
semantics can be reduced to syntax is like that in which Euclidean me ic g 

can be reduced to projective geometry. , svntax 
All this suggests that, in order to maintain the distinction of seman ics r hvthe 

•‘denote" and "have values” should be introduced as undefined terms and treat > ^ 

axiomatic method. Our use of semantical rules is intended as a step towar th{.orvof 
fact Tarski's WahrheitsbegriU already contains the proposal of a" f tnJth. 
truth as an alternative to that of finding a syntactical equivalent o e co P 

144A more precise statement of this will be found in Chapter VIII as * aPP>ie5 
special case of the logistic system of Chapter VII when interpre e , 
indicated in footnote 132, so as to be capable of expressing 1 5 theorems, 

‘“Related to those used by Kurt Gddel in the proof of his incompleten 

set forth in Chapter VIII. 
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of expressing its own syntax (cf. footnote 132) and its own semantics, in 

the sense of containing sentences which express at least a very comprehen¬ 

sive class of the propositions of its syntax and its semantics. But among 

these sentences, if certain very general conditions are satisfied, there will 

always be true sentences of a very elementary semantical character which 

are not theorems—sentences to the effect, roughly speaking, that such and 

such a particular sentence is true if and only if_, the blank being filled 

by that particular sentence.148 Hence, on the assumption that the language 

satisfies ordinary conditions of adequacy in other respects, not all the se¬ 

mantical rules (in the sense of §07), when written as sentences of the lan¬ 

guage, are theorems. 

On account of this situation, the distinction between object language and 

meta-language, which first arises in formalizing the object language, re¬ 

mains of importance even after the task of formalization is complete for 

both the object language and the meta-language. 

In concluding this Introduction, let us observe that much of what we 

have been saying has been concerned with the relation between linguistic 

expressions and their meaning, and therefore belongs to semantics. However, 

our interest has been less in the semantics of this or that particular language 

than in general features common to the semantics of many languages. And 

very general semantical principles, imposed as a demand upon any language 

that we wish to consider at all, have been put forward in some cases, notably 

assumptions (1), (2), (3) of §01 and assumption (4) of §02.147 

We have not, however, attempted to formalize this semantical discussion, 

or even to put the material into such preliminary order as would constitute 

a first step toward formalization. Our purpose has been introductory and 

explanatory, and it is hoped that ideas to which the reader has thus been 

informally introduced will be held subject to revision or more precise for¬ 

mulation as the development continues. 

From time to time in the following chapters we shall interrupt the rig¬ 

orous treatment of a logistic system in order to make an informal semantical 

aside. Though in studying a logistic system we shall wish to hold its inter¬ 

pretation open, such semantical explanations about a system may serve in 

*‘‘A more careful statement is given by Tarski 

^SssSSSi 
And assumption (5) of footnote 30. 
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particular to show a motivation for consideration of it by indicating its 

principal interpretations (of. §07). Except in this Introduction, semantical 

passages will be distinguished from others by being printed in smaller type, 

the small type serving as a warning that the material is not part of the formal 

logistic development and must not be used as such. 

As we have already indicated, it is contemplated that semantics itself 

should ultimately be studied by the logistic method. 

But if semantical passages in this Introduction and in later chapters are 

to be rewritten in a formalized semantical language, certain refinements 

become necessary. Thus if the semantical language is to be a functional 

calculus of order 10 in the sense of Chapter VI, or a language like that of 

Chapter X, then various semantical terms, such as the term “denote” 

introduced in §01, must give way to a multiplicity of terms of different 

types,148 and statements which we have made using these terms must be 

replaced by axiom schemata119 or theorem schemata119 with typical ambi¬ 

guity.119 Or if the semantical language should conform to some alternative 

to the theory of types, changes of a different character would be required. 

In particular, following the Zermelo set theory (Chapter XI), we would have 

to weaken substantially the assumption made in §03 that every singulary 

form has an associated function, and explanations regarding the notation X 

would have to be modified in some way in consequence. 

“•All the expressions of the language—formulas, or well-formed formulas—may be 
treated as values of (syntactical) variables of one type. But terms "denote” of different 
types are nevertheless necessary, because in "_denotes_after filling the first 
blank with a syntactical variable or syntactical constant, we may still fill the second 

blank with a variable or constant of any type. 
Analogously, various other terms that we have used have to be replaced each by a 

multiplicity of terms of different types. This applies in particular to "thing," and tbe 
consequent weakening is especially striking in the case of footnote 9 whic mus 

become a schema with typical ambiguity. 
See also the remark in the last paragraph of footnote 87. 
iaThe terminology is explained in §§27, 30, 33. and Chapter VI. (The typica a 

guitv required here is ambiguity with respect to type in the sense described in loo 
578, and is therefore not the same as the typical ambiguity mentioned in footnote a • 

which is ambiguity rather with respect to level.) 



I. The Propositional Calculus 

The name propositional calculus150 is given to any one of various logistic 

systems—which, however, are all equivalent to one another in a sense which 

will be made clear later. When we are engaged in developing a particular 

one of these systems, or when (as often happens) it is unnecessary for the 

purpose in hand to distinguish among the different systems, we speak of the 

propositional calculus. Otherwise the various logistic systems are distin¬ 

guished as various formulations of the propositional calculus. 

The importance of the propositional calculus in one or another of its for¬ 

mulations arises from its frequent occurrence as a part of more extensive 

logistic systems which are considered in this book or have been considered 

elsewhere, the variables of the propositional calculus (propositional varia¬ 

bles) being replaceable by sentences of the more extensive system. Because 

of its greater simplicity in many ways than other logistic systems which we 

consider, the propositional calculus also serves the purposes of introduction 

and illustration, many of the things which we do in connection with it being 

afterwards extended, with greater or less modification, to other systems. 

In this chapter we develop in detail a particular formulation of the prop¬ 

ositional calculus, the logistic system Pi. Some other formulations will be 

considered in the next chapter. 

10. The primitive basis of P^150 The primitive symbols of Pt are 

three improper symbols 

[ ^ ] 

(of which the first and third are called brackets) and one primitive constant 

/ 
and an infinite list of variables 

P ? r s />, q, r, Sl />, q2 ... 

(the order here indicated being called the alphabetic order of the variables). 

The variables and the primitive constant are called proper symbols.™ 

4“<F'"or'“' -"^j~^rcCr,hnproposi,'onal “kuius wui »• 
tgard.ng the terminology, sec explanations in §07 and in footnote 117. 
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We shall hereafter use the abbreviations “wf” for “well-formed,” “wff” 

for “well-formed formula,” “w-ffs” for “well-formed formulas.” The for¬ 

mation rules of Px are:152 

lOi. The primitive constant / standing alone is a wff. 

lOii. A variable standing alone is a wff. 

lOiii. If T and A are wf, then [T Z3 A] is wf.153 

To complete the definition of a wff of P! we add that a formula is wf if 

and only if its being so follows from the three formation rules. In other 

words, the wffs of Pt are the least class of formulas which contains all the 

formulas stated in lOi and lOii and is closed under the operation of lOiii. 

Though not given explicitly in the definition, an effective test of well- 

formedness follows from it. If a wff is not of too great length, it may often 

be recognized as such at a glance. Otherwise we may employ a counting 

procedure in the following way. If a given formula consists of more than one 

symbol, it cannot be wf unless it ends with ] and begins with [. Then we 

may start counting brackets at the beginning (or left) of the formula, pro- 

•“Systematic methods of numbering theorems, axioms, etc. so as to indicate the sec¬ 

tion in which each occurs were perhaps first introduced by Peano. The method adopted 

here has some features in common with one that has been used by Quine. 
We shall number sections by numbers of two or more digits in such a way that tn 

number of the chapter in which the section occurs may be obtained by deIet‘"S 
last digit. However, chapter numbers are given by Roman numerals, borne cnapi 
have at the beginning a brief introductory statement not in any numbered section 

We shall number axioms, rules of inference, theorems, and metatheorems by_ numt*rs 

of three or more digits in such a way that the number of the section which they occur 

may be obtained by deleting the last digit. We place a dagger, t. ° number of a 
of an axiom or theorem of the logistic system; an asterisk, - before the number o 

(primitive) rule of inference, axiom schema, derived rule of 

schema; and a double asterisk. ", before the number of other me.^e°'Xinedin 
terminology, so far as not already explained ,n the mtroductmn will be expired >n 

this and following chapters.) The numbers of axioms axiom ^hema^ and pntm 

rules of inference have 0 as the next-to-last digit, and an6 .‘h" ^g^JSSwo. 
numbers of theorems, theorem schemata, derived rules of inference, a 

"“n numbering formation rules we use the number of the section in which thjjr occur 

and a small Roman numeral. Thus lOi. lOii. 10.,> are the ^“ation ™lcs M ^ 
A collection of exercises has the same number as the section which^.t lol^ 

individual exercises in the collection we use the number othe c t the 

followed by a period, then another digit or digits. Thus 12.0. 12.1. and 

exercises which follow §12. n9 -nrfs00n without regard 
Definitions and definition schemata are numbered Dl. D2, and so . 

to the section in which they occur. variables see §08. Also see the 
•“Concerning the use of bold letters as syntactical variables see 

italicized statement near the end of §08 juxtaposition (see footnote 
Without the convention that juxtaposition is used J P? . are wffs. then the 

137),we would have to state lOiii morekngthdyasfonows. Ifr and^ are w ed 
formula consisting of (. followed by the symbols of Ti n order, followed oy 

by the symbols of A in order, followed by J. is wi. 
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ceeding from left to right, counting each left bracket, [, as +1 and each 

right bracket, ], as —1, and adding as we go.154 When the count of 1 first 

falls either on a right bracket or on a left bracket with a proper symbol 

immediately after it,155 the next symbol must be the implication sign, z>, if 

the formula is wf.158 This is called the principal implication sign of the for¬ 

mula, the part of the formula between the initial left bracket and the prin¬ 

cipal implication sign is called the antecedent, and the part of the formula 

between the principal implication sign and the final right bracket is called 

the consequent. Then the given formula is wf if and only if both antecedent 

and consequent are wf. Thus the question of the well-formedness of the given 

formula is reduced to the same question about two shorter formulas, the 

antecedent and the consequent. We may then repeat, applying the same 

procedure to the antecedent and to the consequent that we did to the given 

formula. After a finite number of repetitions, either we will reach the ver¬ 

dict that the given formula is not wf because one of the required conditions 

fails (or because we count all the way to the end of some formula without 

finding a principal implication sign), else the question of the well-formedness 

of the given formula will be reduced to the same question about each of a 

finite number of formulas consisting of no more than one symbol apiece. 

A formula in which the number of symbols is zero—the null formula—is of 

course not wf. And a formula consisting of just one symbol is wf if and only 

if that symbol is a proper symbol.157 

Hereafter we shall speak of the principal implication sign, the antecedent, 

and the consequent, only of a wff, as indeed we shall seldom have occasion to 

refer to formulas that are not wf. If a formula is wf and consists of more 

,MThe choice of left-to-right order is a concession to the habit of the eve A like 

right tole'ft11 ** deSCnbed' equa,1>' 6°od- in which the counting would proceed from 

r,:^rrC?,,C,t|y,,if thC £‘Ven formula is wf and consists of more than one symbol 

or r ntVe^rSy a 50 ^iSt h* k and the SeCOnd s>’mbo1 raust be either a proper symbol 
^^theieCOnd Sym*>1 ,S a pr°Per symbol. the third symbol must be =, and this third 
symbol is the principal implication sign. If the second symbol is f, then the count is 

made from left to right as described; when the count of 1 falls on a ]. t£ next symbol 

mmtHbe •?' and th,s 1S the principal implication sign. y 

of ’ '//*d 3,are ‘f?8 USed autonymously. Notice that in addition to the use 

com„o„ „ames ,sea foo,-o.es 4. 6) *“"“*• ^ “ 

When used autonymously, [ may be read orally as “left bracket ” 1 as'Viofcf k i 4 

and =3 as "implication sign” (or more lullv "Sn m SSf*. .Jasnghtbracket." 

tW^°r^^^^”^ayV^°,°^a^°”adyrb^^convenfent'fo^r'(and 
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than one symbol, it has the form [A =3 B] in one and only one way.158 And 

A is the antecedent, B is the consequent, and the z> between A and B is the 

principal implication sign. 

By the converse of a wff [A Z3 B] we shall mean the wff [B id A], 

In Px all occurrences of a variable in a wff are free occurrences', a wff is an 

n-ary form if it contains (free) occurrences of exactly n different variables, 

a constant if it contains (free) occurrences of no variables; all forms are 

propositional forms', and all constants are propositional constants or 

sentences. (Cf. footnote 117.) 

In order to state the rules of inference of P,t we introduce the notation 

“S I” for the operation of substitution, so that SgA| is the formula which 

results by substitution of B for each occurrence of b throughout A.159 This 

is a notation for which we shall have frequent use in this and later chapters. 

It is, of course, not a notation of Px (or of any logistic system studied in this 

book) but belongs to the syntax language, just as the apparatus of syntac¬ 

tical variables does: its use could always be avoided, though at the cost of 

some inconvenience, by employing English phrases containing the words 

“substitute,” “substitution,” or the like. 

The rules of inference are the two following:160 

*100. From [A => B] and A to infer B. {Rule of modus ponens.) 

*101. From A, if b is a variable, to infer SqA|.161 (Rule of substitution.) 

In the rule of modus ponens (*100) the premiss [A zd B] is called the major 

premiss, and A is called the minor premiss. Notice the condition that the 

antecedent of the major premiss must be identical with the minor premiss, 

the conclusion is then the consequent of the major premiss.162 

The axioms of P, are the three following: 

1102. {p zd [<?=>£]] 

|103. [[s ZD (P => q)) => ((S =>/.]=> [s => q))) 

1104. [[[/>=>/] ZD/]=>/>] 

168 As explained in §08. the bold roman capitals have as values formulas (of the lo 

gisticSystem under'amsideration) which are wf. Tim makes it unnecessary to put ,n an 

explicit condition, "where A and B are wf. . k AS values—see 
iWhe bold roman small letters, as "b” here have proper 5 ^b°ls aSit^,‘fUC 

§08. When b does not occur in A. the result of the substl . “immediately 
1,0For brevity, we say simply "infer" in stating the rules rather than 

infer." which is the full expression as introduced in §0-. substitution 
••.it is meant, of course, that B may be any wff. The result oi t« 

is wf. as may be proved by mathematical induction with respect to 

of occurrences of ID in A. . „ antecedent, consequent are 
l**Thc terms modus ponens. major premiss minor 

from Scholastic logic (as are. of course, also premiss, conclusion). 
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The first of these axioms (f 102), or its equivalent in other formulations of 

the propositional calculus (whether or not it is an axiom), is called the law 

of affirmation of the consequent. Similarly, the second axiom is called the 

self-distributive law of (material) implication. And the third axiom is called 

the law of double negation.163 

In accordance with the explanation in §07, a proof in is a finite sequence 

of one or more wffs each of which either is one of the three axioms, or is 

(immediately) inferred from two preceding wffs in the sequence by modus 

ponens. or is (immediately) inferred from one preceding wff in the sequence 

by substitution. A proof is called a proof of the last wff in the sequence,164 

and a wff is called a theorem if it has a proof. 

In addition to the abbreviations “wf,” “wff,” we shall also use, in this and 

later chapters, the abbreviations “t” for “the truth-value truth” and “f” 

for “the truth-value falsehood.” 

The intended principal interpretation of the logistic system P, has already 

been indicated implicitly by discussion in §05 and in the present chapter. We 

now make an explicit statement of the semantical rules (in the sense of §07). 
These are: 

a. / denotes f. 

b. The variables are variables having the range t and f. 

c. A form which consists of a variable a standing alone has the value t 
for the value t of a. and the value f for the value f of a. 

d. Let A and B be constants. Then (A B] denotes t if either B denotes t 
or A denotes f. Otherwise [AdB] denotes f. 

e. Let A be a form and B a constant. If B denotes t, then [A dd B] has the 

value t for all assignments of values to its variables. I f B denotes f, then [AdB], 

for a given assignment of values to its variables, has the value f in case A has the 

tl<Uo^ „ \ l V° "1het‘lcr the namc law °f doub,e negation shall be applied to 
J, ;tr°/ to ll?c vv*,ch rcsults from 1104 by interchanging antecedent and consequent 
‘ here resolved in favor of the former, and to the latter we shall therefore give the 
name converse law of double negation. Thus the law of double negation is the one which 

\b!.8theUself,dUt|0hatnd m\°dUS f°nens) allows thc cancellation of a double negation 

til l', 1, ‘.h distribution of an implication over an implication. And the converse 

inviri to converse oi 1103. which allows the 

(or hv and,t1?4 we replace thc Principal implication sign by the = of D0 below 

•doptea ol obtaining a required w„ ,rL 
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value t for that assignment of values to the variables, and has the value t in case 

A has the value f for that assignment of values to the variables. 

f. Let A be a constant and B a form. If A denotes f. then [A ■=> B] has the 

value t for all assignments of values to its variables. If A denotes t, then 

[A zd B], fora given assignment of values to its variables, has the same value 

that B has for that assignment of values to the variables. 

g. Let A and B be forms, and consider a given assignment of values to the 

variables of [A 3 B], Then the value of [A B] is t if, for that assignment of 

values to the variables, either the value of B is t or the value of A is f. Otherwise 

the value of [A zz> B] is f. 

This has been written out at tedious length for the sake of illustration. Of 

course the last three rules may be condensed into a single statement by intro¬ 

ducing a convention according to which a constant has a value, namely, its 

denotation, for any assignment of values to any variables. And rule d may be 

included in the same statement by a further convention according to which 

having a value for a null class of variables is the same as denoting. 

The reader should see that these rules have the effect of assigning a unique 

denotation to every constant (of P,). and a unique system of values to every 

form. 
As to the motivation of the rules, observe that rule d just corresponds to the 

account of material implication as given in §05, namely, that everything implies 

truth, and falsehood implies everything, but truth does not imply falsehood. 

Rules c, e, f, g are then just what they have to be in view of the account of 

variables and forms in §02. 
Besides this principal interpretation of P, other interpretations are also 

possible, and some of them will be mentioned in exercises later. 

The reader must bear in mind that, in the formal development of the system, 

no use may be made of any intended interpretation, principal or other (cf. §§ . 

09). 

11. Definitions. As a practical matter in presenting and discussing the 

system, we shall make use of certain abbreviations of wffs of P,. 
In particular the outermost brackets of a wff may be omitted, so that we 

write, e.g., 
p=)[q=>p] 

as an abbreviation of the wff fl02. (Of course the expression pz>[q => p] 
is a formula as it stands, but not wf; since we shall hereafter be concerne 

with wffs only, no confusion will arise by using this expression as an abbre¬ 

viation Of [^D[p P)]-) ■ e_ 
We shall also omit further brackets under the convention th . 

storing omitted brackets, association shall be to the left. Thus 

pzDl^f^P 

is an abbreviation of w^e 
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p=Vz>f]zzp 

is an abbreviation of the wff 

[IP => [/=>/]] => PI 

Where, however, in omitting a pair of brackets we insert a heavy dot, . , 

the convention in restoring brackets is (instead of association to the left) 

that the left bracket, [. shall go in in place of the heavy dot, and the right 

bracket, ], shall go in immediately before the next right bracket which is 

already present to the right of the heavy dot and has no mate to the right 

of the heavy dot; or, failing that, at the end of the expression.165 (Here a 

left bracket is considered to be the mate of the first right bracket to the 

right of it such that an equal number, possibly zero, of left and right 

brackets occur between.) Thus we shall use 

as an abbreviation of 1102, and 

[/>=>./=>/]=> p 

as an alternative abbreviation of the same wff for which the abbreviation 

p=>v=>n=>p 
was just given. 

The convention regarding heavy dots may be used together with the pre¬ 

vious convention, namely, that of association to the left when an omitted 

left bracket is not replaced by a heavy dot. Thus for 1103 we may employ 

either one of the two alternative abbreviations: 

5 13 i 

[JD.^D?]D.SD^D,SD? 

Similarly, 

si => [ft => • P => (ft =5 ft] ID ft] ZZ r, 

is an abbreviation of 

[[ft id [s, id (ip => [ft z> ?1]] r> ft]]] r, r2]. 

As we have said, these abbreviations and others to follow are not part of 

the logistic system Px but are mere devices for the presentation of it. They 

“•Compare the use of heavy dots in §06. 
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are concessions in practice to the shortness of human life and patience, such 

as in theory we disdain to make. The reader is asked, whenever we write 

an abbreviation of a wff, to pretend that the wff has been written in full and 

to understand us accordingly.166 Indeed we must actually write wffs in full 

whenever ambiguity or uncleamess might result from abbreviating. And if 

any one finds it a defect that devices of abbreviation, not part of the logistic 

system, are resorted to at all, he is invited to rewrite this entire book without 

use of abbreviations, a lengthy but purely mechanical task. 

Besides abbreviations by omission of brackets, we employ also abbre¬ 

viations of another kind which are laid down in what we call definitions. 

Such a definition introduces a new symbol or expression (which is neither 

present in the logistic system itself nor introduced by any previous defini¬ 

tion) and prescribes that it shall stand as an abbreviation167 for a particular 

wff, the understanding being (unless otherwise prescribed in a special case) 

that the same abbreviation is used for this wff whether it stands alone or as 

a constituent in a longer wff.168 

‘“There will be a few exceptions, especially in this section and in §16, where abbre¬ 

viations are used as autonyms in the strict sense, i.e., as names of the abbreviations 

themselves rather than to denote or to abbreviate the wffs. But we shall take care that 

this is always clear from the context. . .. 
,,7In a few cases we may make definitions which fail to provide an abbreviation in 

the literal sense that the new expression introduced is actually shorter than the wff 

for which it stands. Use of such a definition may neverthclbss sometimes serve a purpose 

either of increasing perspicuity or of bringing out more sharply some particular ea urc 

‘“Definitions in this sense we shall call abbrevialive definitions, in order to distinguish 

them from various other things which also are called or may be called definitions (in 

connection with a formalized language). These latter include: .. 
(1) Explicative definitions, which are intended to explain the meaning o a no 

(symbol, wff, connective, or operator) already present in a given language, an '' 

are expressed in a sentence of that same language. Such an explicative * 
often involve a sign of equality or of material or other equivalence, paced between'in 

notation to be explicated, or some wff involving it. and another wff of thcj gQS 
(We do not employ here the traditional term real definition because it carries ass 

and presuppositions which we wish to avoid.) _„anine of 
(2) Statements in a semantical meta-language, giving or explaining . 

a notation already present in the object language. These may.be 

semantical rules in the sense of §0<, or what we ma> call, in an 

semantical rules. ... ■ ... arP intended to 
(3) Definitions which are like those of (1) in lorm, except tha y ^ ^ gince 

extend the language by introducing a new notation not former y p occur as 

definitions in this sense are as much a part of thc °j^ct angu. 8., t such definitions 
are axioms or theorems of it. the writer agrees, with Le$me«*k, that• ^s“c;fdtehf‘n‘imi. 

are allowed, it must be on thc basis of rules of definition. ‘nc,“dt reQPuired in the case 
tive basis of the language and as precisely formulated as weha^q^ conditions of 

of the formation and transformation rules (in Partl^u.‘fr* Pwho uSC definitions 

ifsr = js sssMfc 
39.a-V .3 much nearer than many * 
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In order to state definitions conveniently, we make use of an arrow, “ 

to be read “stands as an abbreviation for” (or briefly, “stands for”). This 

arrow, therefore, belongs to the syntax language, like the term “wff” or 

the notation “S |" of §10. At the base (left) of the arrow we write the 

definiendum, the new symbol or expression which is being introduced by the 

definition. At the head (right) of the arrow we write the definiens, the wff 

for which the definiendum is to stand. And in so writing the definiens we 

allow ourselves to abbreviate it in accordance with any previous definitions 

or other conventions of abbreviation. 

Our first definition is: 

Dl. / -*/=>/ 

This means namely that the wff [f~5 /], the definiens, may be abbreviated 

as/, whether it stands alone or as a part of a longer wff. In particular, then, 

the wff which we previously abbreviated as 

/>=>[/=>/]=>/> 

may now be further abbreviated as 

p=>t-=>p. 

complete rigor, hut fails to allow full freedom of definition, as provision is lacking for 

many kinds of notation that one might wish for some purpose to introduce by defini¬ 
tion). On the other hand, once the rules of definition have been precisely formulated, 

they become at least theoretically superfluous, because it would always be possible to 

oversee in advance everything that could be introduced by definition, and to provide 
or it instead by primitive notations included in the primitive basis of the language. 

This remains true even when the rules of definition are broad enough to allow direct 

introduction of new notations for functions of positive integers or of non-negative in¬ 
tegers by means of recursion equations, as is pointed out in effect, though not in these 

words, by Carnap in 1'he Logical Syntax of Language. §22 (compare also Hilbert and 
Bornays, vol. 2. pp. 293-297). 

Because of the theoretical dispensability of definitions in sense (3). we prefer not to 
se them, and in defining a logistic system in §07 we therefore did not provide for the 

inclusion of rules of definition in the primitive basis. Thus we avoid such puzzling 

1#°nS as* whether definitions of this kind should be expressed by means of the same 
gn oi equality or equivalence that is used elsewhere in the object language or by means 

defin^n^V* S,.8l\°f e1u*ltiy by such as “ = df”; and indeed whether these 

tba'n'the^bjeef0language (be‘ng n°tat'°ns) to a "‘eta-language rather 

ul0^0,^ iD thC d°main oi formal logic at a11 is thc heuristic process of deciding 
Kaw) KS T™'** °' * n0tatj°n (°Ue" a word °r an exPressi°" of a natural 
Of LVocZZh C^ Vague °r/ P 1 mean,n8 is already known, though the result 
AlS not m expressed in or may motivate adef.mtion of one kind or another. 

a proper 'name rTl“ ‘°8IC * the Procedure of definition by which 

or po''„."g .robjeT'’ “ '° * °bi'Ct b>’ 

a"‘°rmf*ed -otn-Unguage we shall continue to speak ol 

a; tcro Se“ r,rr,iad,trs. r^ 
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In stating definitions we shall often resort to definition schemata, which 

serve the purpose of condensing a large number (commonly an infinite 

number) of definitions into a single statement. For example, if A is any 

wff whatever, [A 3 /] is to be abbreviated by the expression which consists 

of the symbol - followed by the symbols of A in order. This infinite list of 

definitions is summed up in the definition schema: 

D2. ~A + A zd f 

Notice here, as in other examples below, that we use the same abbreviations 

and the same methods of abbreviation for expressions which contain syntactical 

variables and have wffs as values that we do for wffs proper. This is perhaps 

self-explanatory as an informal device for abbreviating expressions of the 

syntax language, and when so understood it need not be regarded as a 

departure from the program of §08 (cf. the last paragraph of that section). 

We add also the following definition schemata:169 

D3. [AcJ: B] ^»,Bd A 

D4. [AvBJ^AdBdB 

D5. [AB] -* A <£ B B 

D6. [AeB]->[AdB][BdA] 

D7. [A =£ B] -► [A cfc B] v [B c|: A] 
D8. [A c B] B z> A 

D9. [A 4? B] -* B 4: A 

DIO. [AvB]->~A~B 

Dll. [A|B]-*~Av~B 

Of course it is understood that a wff may be abbreviated at several places 

simultaneously by the application of definitions. E.g., 

pis ~p 

is an abbreviation of 

[[[[[/ 3 /] 3 [[[/ 3 /] 3 P) 3 /]] 3 /] 3 \P 3 /]] 3 [fi => /]]• 

Also the conventions about omission of brackets which were introduced 

at the beginning of this section, for wffs not otherwise abbreviated, are to 

be extended to the case in which abbreviations according to D1 H ar 

already present. (In fact we have done this several times above already, 

e.g., in D5 we have omitted, under the convention of association to the 

‘••Some of these receive little actual use in this book, but are induded so as to be 

available if needed. The character V is employed, in place of the V with 

line across it, only in consequence of typographical difficulties. 
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two pairs of brackets belonging with the two signs <£ according to D3, and 

in D6 we have omitted an outermost pair of brackets which would be present 

according to D5.) 

Here the convention about restoring an omitted pair of brackets repre¬ 

sented by a heavy dot remains the same as given before. For example, 

p.q=>r 

becomes, on restoring brackets, 

[/>[?=> ']]. 

which in turn is an abbreviation of the wff, 

[[b3r]3[[[fDr]Dfl3/]]3/]. 

The convention of association to the left is, however, modified as follows. 

The bracket-pairs appearing in wffs and in expressions abbreviating wffs 

are divided into three categories. In the highest category are bracket-pairs 

which belong with the sign => according to lOiii or which belong with one of 

the signs <£, =, =f=, cz, £ according to D3, D6, D7, D8. D9. In the second 

category are bracket-pairs belonging with one of the signs v, v, | according 

to D4, DIO, Dll. And in the third category are the bracket-pairs of D5. 

Among bracket-pairs of the same category, the convention of association 

to the left applies as before in restoring brackets. But bracket-pairs of higher 

category are to be restored first, without regard to those of lower category, 

and are to enclose those of lower category to the extent that results from 

this.170 The sign - has no brackets belonging with it, but it is of a fourth and 

lowest category in the sense that a restored left bracket (not represented 

by a heavy dot), if it falls adjacent to an occurrence of - or a series of succes¬ 

sive occurrences of must be placed to the left thereof rather than the right. 

For example, upon restoring brackets in p v qr, the result is [p v [qr]] 

rather than [[p v r]. Upon restoring brackets in 

the result is 

p q v ~rs = ~p v ~q v s, 

[[/>=>[? v [~rs]]] = [[~p v ~q] v s]] 

When the convention regarding categories of bracket-pairs is used in 

conjunction with the convention regarding heavy dots, the procedure in 

equation?^. ^onvcation a,bout restoring brackets or parentheses is familiar in reading 

equalitv ar^Inalgcbra* where the brackets or parentheses with the sign <5 

second category and^^Tt^m^36 S'gnS °f add,tion and subtraction in a 

- (2s)) - «■-»> -tf. 
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restoring brackets is as follows. In the case that there are no heavy dots 

occurring between a pair of brackets already present, we take the expression 

as broken up into parts by the heavy dots, restore the brackets in each of 

these parts separately (using the convention regarding categories of bracket- 

pairs, and among bracket-pairs of the same category the convention of 

association to the left), and then finally restore all remaining brackets as rep¬ 

resented by the heavy dots. In the contrary case we first take a portion of 

the expression which occurs between a pair of brackets already present, and 

which contains heavy dots but contains no heavy dots between any pair of 

brackets already present within it; we treat this portion of the expression 

in the way just explained, so restoring all the brackets in it; and then we 

take another such portion of the resulting expression, and so continue until 

all brackets are restored. For example, upon restoring brackets in 

p => q ■ rs, p => qr ,r 13 s, 

pZD .q .rs, p => .qr .r zo s, 

Of^D.prV.SD^D.SD^, 

the results are respectively 

[[p H q][rs)), [[/> 3 [qr])[r 3 »]]. 

[p => to[«]]]. [p => [[v'Wr => *]]L 

[[s =5 [p => [fa 3 r] V [S ID ~?]]]] 3 [s Z> -/>]]. 

Finally we also allow ourselves, for convenience in abbreviating a wff, 

first to introduce extra brackets enclosing any wf part of it. Thus, for 

example, we use 

P z> q .r, p~Z> q , ~r, p = q v . ~r 

as abbreviations of wffs which would be written more fully as 

[[/>3?]r], [[p=>q)~r). [[/> = ?] v ~r]. 

The fact that the definienda in D2-11 agree notationally with sentence connec¬ 

tives introduced in §05 is of course intended to show a certain agreemcn in 

meaning. Indeed in each definition schema the convention of abbreviation whic 

is introduced corresponds to and is motivated by the recognition that a ce 

connective is already provided for, in the sense that there is a notation 

present in Px (though a complex one) which, under the principal interpretation 

of Pj, has the same effect as the required connective. . .. 

For example, giving P, its principal interpretation, we nee no a -g 

connective - to P, because we may always use the notation [A =>/j 

negation of a sentence A (or of a propositional form A). All the purpo 

notation ~A, except that of brevity, are equally served by the notation [ H- 
and we may therefore use the latter to the exclusion of the former. 
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In the same manner, D4 corresponds to the recognition that [[A id B] id B] 

may be used as the (inclusive) disjunction of A and B. so that it is unnecessary to 

provide separately for disjunction.1,1 The reader may see this by observing that, for 

fixed values of the variables (if any), [[A d B] d B] is false17* if and only if 

[A 3 B] istrue*7,and at the same time B is false; but, B being false, [A id B] 

is true if and only if A is false; thus [[A dd B] id B] is false if and only if both A 

and B are false (and of course is true otherwise); but this last is exactly what we 

should have for the disjunction of A and B. 

Similarly, the motivation of the definition D1 is that the wff abbreviated as 

I is a name of the truth-value truth (according to the semantical rule d of §10). 

12. Theorems of Pj. As a first example of a theorem of Pt we prove: 

1120. p ZJ p (Reflexive law of (material) implication.) 

The reader who has in mind the principal interpretation of P,, as given in §10, 

may be led to remark that this proposed theorem is not only obvious but more 

obvious than any of the axioms. This is quite true, but it does not make un¬ 

necessary a proof of the theorem. For we wish to ascertain not merely that the 

proposed theorem is true but that it follows from our axioms by our rules; and 

not merely that it is true under the one interpretation but under all sound 
interpretations.171 

A proof of 1120 is the following sequence of nine formulas: 

s => [p ID q] ID . s r>/>=>. s ID q 

S D [r D?] D.s Dr D.S D? 

S D[r D^D.SDrD.S D^ 

P=>[r=>p]z>.p=>rz>. p=> p 
P=>[q=>p]=>.p=>q=>.pIDp 

P=>-q =>P 
pZD q=> mp=> p 

P=>[q=>p]=>.p=>p 
P=>P 

The wffs have here been abbreviated by conventions introduced in the 

preceding section, and in verifying the proof the reader must imagine them 

a'!!!! be Possible and perhaps more natural to use *AdB (i.e., rrA /l 

thnr the d,sjunctlon °f A and B. We have chosen AdBdB instead because 

cd fo^thfa‘n thC faCt 1°Se °f thC constant / (°r of negation) can be avoid- 
Ru^.11 r1? b PurP°se- The definition of A vB as AdB d B is given bv 

k' Malhem*ie* (1903>- and a8ain- "lore formally, in the 
im Journal o/ Mathematics, vol. 28 (1900), p. 201 

forfixeVva uesCofih§<!4, 3 Sent™ce is true or false according as it denotes t or f. And 
as its value is f * vanab,es we caJ1 a propositional form true or false according 

"including interpretations that arc sound in the generalized sense of §19. 
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rewritten in unabbreviated form (or, if necessary, must explicitly so rewrite 
them). 

It is sufficient theoretically just to write the proof itself as above, without 

added explanation, since there are effective means of verification. But for 

the practical assistance of the reader we may explain in full, as follows. The 

first wff of the nine is 1103. The second wff we obtain from the first by *101, 

substituting r for p. Again the third wff is obtained from the second by sub¬ 

stituting p for q. The fourth one is obtained from the third by substituting 

p for s. The fifth is obtained from the fourth by substituting q for r. The 

sixth wff is 1102. The seventh one results by modus ponens from the fifth 

one as major premiss and the sixth as minor premiss. Then the eighth wff 

results from the seventh by another application of *101, q zd p being sub¬ 

stituted for q. Finally p zd £ results by modus ponetis from the eighth and 

the sixth wffs as major premiss and minor premiss respectively. 

The fifth wff in the proof may conveniently be looked upon as obtained 

from the first by a simultaneous substitution, namely the substitution of 

P, q, p for s, p, q respectively. And the proof exhibits in detail how the effect 

of this simultaneous substitution may be obtained by means of four succes¬ 

sive single substitutions. 

We extend the notation for substitution introduced in §10, so that 

Qb,b,...u. 

shall be the formula which results by simultaneous substitution of Bj, B,, 

.. ., B„ for bj, b2.bn in A. The substitution is to be for all occurrences 

of bj, b2, . .., b„ throughout A. It is required that b2, b2,..bn be all 

different (else there is no result of the substitution). But of course it is not 

required that all, or even any, of blf b2...., bn actually occur in A. 

The effect of the simultaneous substitution. 

qI>i bj ...b„ 

^rlrr..rm 

where b,, b2.bn are variables and all different, may always be obtained 

by means of 2n successive single substitutions, i.e., 2n successive applica¬ 

tions of *101. In some cases it may be possible with fewer than 2n single 

substitutions, but it is always possible with 2n, as follows. Let c,, c2,. • •» c» 

be the first n variables in alphabetic order not occurring in any of the wffs 

Bj, B2.Bn, A (such will always exist, because of the availability of an 

infinite list of variables). Then in A substitute successively Cj for b1( c* 

for b2, . . ., cn for b„. B, for q. B2 for Cj,..Bn for cn. 
We shall use the sign h as a syntactical notation to express that a wf is a 
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theorem (of Px. or, later, of other logistic system). Thus “h p Z3 p" may be 

read as an abbreviation of “p z> /> is a theorem," etc. (Cf. footnote 65.) 

With the aid of this notation we may state as follows the metatheorem 

about simultaneous substitution of which we have just sketched a proof: 

•121. If I-A, then h S??1" r" A|. * ia r-4 a 

We shall make use of this metatheorem as a derived rule of inference. I.e., 

in presenting proofs we shall pass from A immediately to 

cb,b*-b1. a. 
^r,rr..r. 

not giving details of intermediate steps but referring simply to *121 (or to 

"simultaneous substitution” or to "substitution”). 

Justification for such use of derived rules of inference is similar to that for 

the use of definitions and other abbreviations (§11), namely, as a mere 

device of presentation which is fully dispensable in principle. On this account, 

however, it is essential that the proof of a derived rule of inference be effec¬ 

tive (cf. §§07, 08) in the sense that an effective method is provided according 

to which from a given proof of the premisses of the derived rule it is always 

possible to obtain a proof of the conclusion of the derived rule.174 For we 

must be sure that, whenever a proof presented by means of derived rules is 

challenged, we can meet the challenge by actually supplying the unabridged 

proof. In other words we take care that there is a mechanical procedure for 

supplying the unabridged proof whenever called for, and on this basis, when 

a proof of a particular theorem of a logistic system is presented with the 

aid of derived rules, we ask the reader to imagine that the proof has been 

written in full (and, on occasion, actually to supply it in full for himself). 

The proof of *121 is clearly effective, as the reader will see on reviewing it. 

With the aid of *121 as a derived rule, and some other obvious devices 

of abbreviation, we may now present the proof of fl20 as follows: 

By simultaneous substitution in -f 103: 

[q=>P}^>.p=>q=>mp=>p 

By f 102 and modus ponens’. 

\-p=>q=>, 

By substitution of q p for q: 

_ P=>P 

a"d V—meta theorems 
derived rules. e,,ecUve- But su<* metatheorems must not be used in the role of 
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Finally by |102 and modus ponens: 

Yp=>p 

(Thus a presentation of the proof and some practical explanation of it are 

condensed into about the same space as occupied above by the unabridged 

proof alone.) 

We now go on to proofs of two further theorems of Pv 

1122. fzDp 

By simultaneous substitution in fl02: 

H^ = / = / = p = ./=.? = /=,/ = ? 

By 1104 and modus ponens: 

\-f=>.p^fz>fz>p 

By simultaneous substitution in |103: 

H=>U>=>l=>f=>fi]=>./=>y>=>/=>f]=>.t=>fi 
By modus ponens: 

hfz>[p=>f=>f]=>.f=>p 
By simultaneous substitution in 1102: 

\-fz>.p=>f=>f 
Hence by modus ponens: 

V f-=> p 

1123. pZDfZD.p^q 

By simultaneous substitution in f 102: 

h/DjD.^D./D? 

By substitution in fl22:175 

\-fz>q 

By modus ponens: 

\-p=>.f=>q 

By simultaneous substitution in f 103: 

\-p=>[/Z3q)z>.p=>fz>.p=>q 

Hence by modus ponens: 

Yp^fz>.pz>q 

(f 123 is known as the law of denial of the antecedent. Notice that it may 

be abbreviated by D2 as ~p z> . p Z> q.) 

,74The entire proof of 1122 therefore enters at this point as part of the proof of f 123 

when written in full. 
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EXERCISES 12 

12.0. Prove (as a metatheorem) that the effective test of well-formedness 

given in §10 does in fact constitute a necessary and sufficient condition that 

a formula be wf according to the formation rules lOi-iii. (Use mathematical 

induction with respect to the number of occurrences of z> in the formula.) 

12.1. Prove the assertion made in §10 that, if a formula is wf and consists 

of more than one symbol, it has the form [A z> B] in one and only one way. 

Also that any wf (consecutive) part of the formula is either the entire for¬ 

mula or a wf part of A or a wf part of B.178 (For the proof, employ the same 

method of counting brackets as in the effective test of well-formedness, and 

again proceed by mathematical induction with respect to the number of 

occurrences of zd in the formula.) 

12.2. Let P1L be the logistic system which we obtain from Pl by a change 

of notation, writing systematically C_in place of [_zd_], in 

the way described in footnote 91, and leaving everything else unaltered. 

State the primitive basis of P1L. State and prove the metatheorems about 

P1L which are analogues of those of 12.0 and 12.1.177 

The following proofs are to be presetted with the aid of *121 and in the same 

manner as is done in the latter part of §12. Do not use methods of later sections. 

12.3. Prove q^rzD.p^qzD.pzzrasa, theorem of Pv Use this theorem 

in order to give proofs of |122 and jl23 which are briefer than those above, 

in the sense that they can be more briefly presented.178 

12.4. Use the result of 12.3 in order to prove the transitive law of (material) 

implication, P^q'^.q^irzD.p'Z) r, as a theorem of Pj. (One method is to 

apply the self-distributive law to the result of 12.3, then to use p z=> q => 
q^rzp.p^q.) 

A * ,djffArent method than that indicated here, proved by S C Kleene in 
Annals 0/ Mathematics, vol. 35 (1934) DD 511 y/• . e?ne ,n. tbe 

Tzssrsystem tL ^ 
However, the reader should carrv thrn.iah th* m ^ proved m the next chapter, 

at these later proofs. Or. alternatively8 if thePDrooh exerc,s^Jlth°Ut looking forward 
should be written out more fullv an 1 low followed, they 

prooi of the ,e„ma which is esed below ££££“'. £3Sh°"'d eive" °f ““ 

g5^r!c^MTo°7ae‘k'?wfk°)T,“”,S' "°: 3,(1932>’ Rendus dts Stances de la Sociiti des Science< ,t r JaSk°W8kl) of a paper in Comptes 

(!»«!:pp ,53-‘8*K"' 

o,“X‘y that the P™°f ta tull consists of a shorter 
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12.5. Prove p zd q => p id mp 3 / z> as a theorem of Pt. (Use fl23,12.4.) 

12.6. Prove Peirces law, />ZD^=)/)=>/.asa theorem of Pv (Apply the 

self-distributive law to p-=o f => mp=> /, and use the result of 12.5.) 

12*7* Let PWbe *be logistic system which has the same primitive sym¬ 

bols, formation rules, and rules of inference as Pj and which has as its axioms 

the transitive law of implication, Peirce’s law, fl02, and fl22. Prove the 

following in order, as theorems of Pw, and hence show that Pt and Pw are 

equivalent systems in the sense that they have the same theorems: 

[pz> mp=>q]z> mpz>q 

P »P 13 q 3 q (Law of assertion.) 

[/>=>. qzor]z>.qiDmpzor (Law of commutation.) 

q=>r=>.p=>q=).pz}r 

s=>[pzoq\=).s=>p=>.s=>q 

/>=>/=>/=>£ 

Carry out the proofs in such a way that no use is made of the fourth axiom, 

1122, except in the proof of the last theorem, p z> / ■=> f z> p. 

12.8. Prove as theorems of Pw, without making use of the fourth axiom, 

1122: yDrDrD./iD^DrDr; o.^D.fDr; p 3 r id r id. 

q=>rzo.pziqZDr\ pZDrz^.p^oqzorzDr. 

12.9* For each of the three following interpretations of P, (cf. §10), state the 

remaining semantical rules, and discuss the soundness of the interpretation in 

the sense of §07: (1) Rules a, b, c are retained, but [A z> B] denotes t if A and B 

are any constants. (2) Rules a, b, c are retained, but [A zd B] denotes t if A and 

B denote the same truth-value, (A z> B] denotes f if A and B denote different 

truth-values. (3) Rules a, d are retained, but the variables (so-called) are inter¬ 

preted as constants denoting t. 

13. The deduction theorem. A variant of a wff A of P! is a wff obtained 

from A by alphabetic changes of the variables of such a sort that two occur¬ 

rences of the same variable in A remain occurrences of the same variable, 

and two occurrences of distinct variables in A remain occurrences of distinct 

variables. Thus if a1, a2, ..., a„ are distinct variables, and bx, b2,..., bn 

are distinct variables, and there is no variable among bl( b2,..., bn which 

occurs in A and does not occur among alt aj,..., a„, then 

S*l*f *••** 
b1b,...bn 

is a variant of A. (Variants of fl02, for example, are r 

P z> q, but not p Z> .r r or p ZD .p 3 p.) 

s Z5 r and q 3 ■ 
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It is clear that if B is a variant of A, then A is a variant of B. And any 

variant of a variant of A is a variant of A. Also of course any wff A is a var¬ 

iant of itself. 

In many ways, two wffs which are variants of one another serve the same 

purposes. In particular, in view of *101, every variant of a theorem is a 

theorem. Also, if we alter the system Px by replacing one or more axioms by 

variants of them, the theorems remain the same. In the case of theorems to 

which verbal names have been assigned (e.g., “the self-distributive law of 

implication,” “Peirce’s law,” etc.), we shall use the same name also for any 

variant of the theorem. 

A finite sequence of wffs is called a variant proof if each wff is either a 

variant of an axiom or is immediately inferred from preceding wffs in the 

sequence by one of the rules of inference. Evidently the final wff in a variant 

proof is always a theorem, since every variant of an axiom is a theorem; and 

we shall call the variant proof a variant proof of its final wff. 

A finite sequence of wffs, B,, B2.Bm, is called a proof from the 

hypotheses Ax, A2, . . ., A„ if for each i either: (1) B, is one of A1( A2, . . ., A„; 

or (2) B( is a variant of an axiom; or (3) B, is inferred according to *100 

from major premiss By and minor premiss Bt, where / < t, k < j; or (4) B, 

is inferred, according to *101, by substitution in the premiss B,, where ; < i, 

and where the variable substituted for does not occur in A1( A2, . . ., An. 

Such a finite sequence of wffs, Bm being the final formula of the sequence, is 

called more explicitly a proof of Bm from the hypotheses A1( A2.An; 

and we use the notation 

Ax> A2, . .., An h Bm 

to mean: there is a proof of Bm from the hypotheses Av A2, . . ., An. 

Observe that the sign 1- is not a symbol belonging to the logistic system P, 

nor is it part of any schema of abbreviation of wffs of P2, but rather it belongs 

to the syntax language (like the notation “S |” or the abbreviation “wff”) 

and is used in making statements about the wffs of Px. 

The use of the sign h which was introduced in §12 may be regarded as 

amounting to a special case of the foregoing, namely the special case that 

» = 0. For a proof of Bm from no hypotheses is the same as a variant proof 

of Bm; and we may now read the notation 1- Bm either as meaning that 

there exists a variant proof of Bm or as meaning that Bm is a theorem (the 
two being trivially equivalent). 

In the definition of proof from hypotheses, the condition attached to (4) 

should be especially noted, that the variable substituted for must not be 
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one of the variables occurring in A„ A2.An. For example, although 

? 3 f 3 t ^ / results from q 3 / id / by substitution of q 3 / for it is false 
that ? 3 / 3 / h q 3 / id / 3 /. On the other hand it is true that 

? 13 / ^ ^ I- by *100 and an appropriate variant of f 104. 

After these preliminaries, we are ready to state and prove the meta¬ 
theorem which constitutes the principal topic of this section: 

*130. If A1( A2-- An I- B, then Alf A2,..An-1 h An 3 B. 

(The deduction theorem.) 

Proof. Let Blf B2.Bm be a proof of B from the hypotheses At, A2, 

• • •• An (Bm being therefore the same as B). And construct first the finite 
sequence of wffs, An 3 B„ A„ 3 B,.A„ 3 Bm. We shall show how to 

insert a finite number of additional wffs in this sequence so that the resulting 

sequence is a proof of An 3 Bm, i.e., of An 3 B, from the hypotheses A,, A2, 

.... An_,. The inserted wffs will be put in before each of the wffs A„ 3 B{ 

in order in such a way that, after completing the insertions as far as a par¬ 

ticular A„ 3 B,, the whole sequence of wffs up to that point is a proof of 

A„ 3 B, from the hypotheses A2, A2__ A„_j.179 

In fact consider a particular An 3 B,, and, if i > 1, suppose that the in¬ 

sertions have been completed as far as An 3 B,_,. The following five cases 
arise: 

Case la: B, is An. Then An 3 B, is An 3 A„. Insert nine wffs before 

An 3 B„ constituting namely a variant proof of an appropriate variant of 

1120 from which A„ 3 B, can be inferred by substitution. 

Case lb: B, is one of Alf A2.An_,, say Ar. Then Ar 3 . An 3 B, is 

Ar 3 . An 3 Ar. From an appropriate variant of |102, Ar 3 . An 3 B, can 

be inferred in two steps by substitution (*101). Before An 3 B, insert first 

the three wffs which show this, then Ar. From the last two of these four wffs, 

namely Ar 3 . An 3 B, and Ar. An 3 B^ can be inferred by mod us ponens 

(*100). 

Case 2: B, is a variant of an axiom. Following the same plan as in case lb, . 

insert four wffs before An 3 B,, namely first a variant proof of B, 3 . A„ B< 

(in two steps by substitution from a variant of f 102), then B* (a variant of 

an axiom). 
Case 3: B, is inferred by modus ponens from major premiss B, and minor 

premiss B*, where; < i, k < 1. Then B, is Bt 3 B,. Before A„ 3 B, insert 
first tlfour wffs which show the inference of A„ 3 B, 3 . A„ d Bt 3 . 

s in effect the method of the proof is that of mathematical induction with 

respect to m (or i). 
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An 3 B„ by three successive substitutions, from a variant of j 103; then 

after these the wff An 3 Bt 3 . A„ 3 B, (which can be inferred by modus 

ponens, and from which then An 3 B, can be inferred by modus fonens, since 

the necessary minor premisses, An 3 B, and An 3 Bt, are among the earlier 

wffs already present in the sequence being constructed). 

Case 4: Bt is inferred, according to *101, by substitution in B,,where 

j < i and where the variable substituted for does not occur in Alf A2, . . ., A„. 

No wffs need be inserted before An 3 B,, as the same substitution suffices 

to infer An 3 B, from An 3 B, (here, of course, it is essential that the vari¬ 

able substituted for does not occur in An). 

As the special case of the deduction theorem in which n = 1 we have the 

following corollary: 

*131. If A I-B, then H A 3 B. 

In connection with the deduction theorem we shall need also the three 

following metatheorems: 

*132. If At, A2, . • ., An I- B, then C,, C2.Cr, Av A2.An h B. 

Proof. Let a,, a2.a, be the complete list (in alphabetic order) of 

those variables which occur in C„ C2, ..Cr but not in AIf A2.A„. 

If the given proof of B from the hypotheses A„ A2.An is not also a 

proof of B from the hypotheses C„ C2.Cr. A„ A2.An, it can only 

be because it involves substitutions for some of the variables a„ a2.a,. 

Therefore let Cj, c2, .. ., c, be variables which are all distinct and which do 

not occur in C,, C2,..Cr, A,, A2, ..., An or in the given proof of B from 

the hypotheses A„ A2.A„ (to be specific, say that cv c2, .. ., c, are 

the first / such variables in the alphabetic order of the variables). And 

throughout the given proof of B from the hypotheses A„ A2.An replace 

&1, a*.a» by ci> c2-- ci respectively. The result is a proof from the 
hypotheses C1( C2.Cr> Alt A2.An of 

i5cic* -e« “I' 

a proof of B from the ^me hypotheses, it is then necessary only to 
add / additional steps, substituting successively at for cx, a2 for c2, 

*133. If (- B, then Clf C2.Cr h B. 

Proof. This is the special 

• • •* 

case of *132 in which n = 0. 
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*134. If every wff which occurs at least once in the list A1( A* ..., A„ 

also occurs at least once in the list C,, C2,..., Cr, and if A„ A," 
..., An h B, then Cj, C2,..., C, h B. 

Proof. Since it is clearly indifferent, in connection with proof from hypoth¬ 

eses, in what order the hypotheses are arranged, or how many times a 

particular hypothesis is repeated, this is a corollary of *132. 

Importance of the deduction theorem to the metatheory (syntax and seman¬ 
tics) of the system P is clear—as a matter of showing the adequacy of the system, 
in a certain direction, for the purposes for which it is intended, namely for formal¬ 
ization of the use of sentence connectives (see §06) and of inferences involving 
them. 

It is also possible to make use of the deduction theorem in the role of a 

derived rule of inference (cf. §12), since the proof of the deduction theorem 

provides an effective method according to which, whenever a proof of B 

from the hypotheses A1( Aj, ..., An is given, it is possible to obtain a proof 

of An zd B from the hypotheses Ax, A2,..., A,^ —hence by repetitions of 

the method to obtain a proof of A, zd . A2 z> .... An_j zd . A„ 3 B. 

As examples of this use of the deduction theorem as a derived rule, we 

present the following alternative proofs of the last two theorems of §12: 

Proof of 1122. By simultaneous substitution in |102.' 

b/ZD./» ZD/ZD/ 

Hence by modus ponens: 

/»•/>=>/=>/ 

Hence by f 104 and modus ponens: 

t^P 
Hence by *131: 

•-/=>/> 

Proof of |123. By modus ponens: 

P^t. P^I 

By the variant, / zd of f 122 and modus ponens: 

P^f, P I- ? 
Hence by *130: 

p=>fYp=>q 

Hence by *130 again (or, what comes to the same thing, by *131): 

\-p=>fz>.p=>q 
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14. Some further theorems and metatheorems of Pr We go on 

to prove three additional theorems of Px, using the deduction theorem in 

order to present proofs more briefly. 

fl40.180 pz> /z> ./>=> q=> f 

By two applications of modus potiens: 

p, q => /, p => q h / 

By three applications of the deduction theorem: 

\-p=>.q=>fz>.pzoqzof 

|141. pzoqz^.q^Drz^.piDr 

By two applications of modus ponens: 

pzoq, q=>r, pYr 

Hence by the deduction theorem: 

(As already indicated in 12.4, |141 is known as the transitive law of 

implication.) 

f!42. /irj/n rD ./id rDr 

By the transitive law of implication (i.e., by substitution in f 141 or a 

suitable variant, and modus ponens): 

P=>r, r => / Y p => / 

Hence by two applications of modus ponens: 

P~=>f=>r, p=>r, r=)fYf 

Hence by the deduction theorem: 

pzzf=>r, p=>rYrz> / / 

Hence by a variant of f 104 and modus potiens: 

p=>fzzr, p^rYr 

ltoq Z3 f may be read in words either as "not q” or as "q is false" (where "is false” is 

SoSTtUO 1116 term bUt merely * sy**°y™ "not” or "TmpTi^ 
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Hence by the deduction theorem: 

h/)D/Dr3./»DrDr 

We add also the following metatheorem, which will be needed in the next 

section: 

**143. If a formula is wf and consists of more than one symbol, it has the 

form [A 3 B] in one and only one way. 

Proof. It is immediate, from the definition of a wff, that a wff of more 

than one symbol has the form [A id B] in at least one way. We must show 

that it cannot have this form in more than one way. 

W e use the same process of counting brackets which is described in §10. 

Namely we start at the beginning (or left) of a formula and proceed from 

left to right, counting each occurrence of [ as +1 and each occurrence of ] 

as —1, and adding as we go. The number which we thus assign to an occur¬ 

rence of a bracket will be called the number of that occurrence of a bracket 

in the formula. 

It follows from the definition of a wff that, if a wff contains the symbol id, 

it must begin with an occurrence of [ and end with an occurrence of ]; these 

we shall call respectively the initial bracket and the final bracket of the wff. 

By mathematical induction with respect to the total number of occurrences 

of zd we establish the following lemma: The number of an occurrence of a 

bracket in a wff is positive, except in the case of the final bracket, which has the 

number 0. 

Now suppose that [A id B] and [C zd D] are the same wff. Case 1: If A 

contains no occurrence of z>, it must consist of a single symbol, either a 

variable or /; since C begins with the same symbol as A, it follows that C 

has no initial bracket and therefore cannot contain the symbol id; therefore 

C must be identical with A. Case 2: If C contains no occurrence of ZD, it 

follows by the same argument that A must be identical with C. Case 3: If 

A and C both contain the symbol id, then the final bracket of A is the first 

occurrence of a bracket with the number 0 in A, and therefore is the second 

occurrence of a bracket with the number 1 in [A id B]; and the final bracket 

of C is the first occurrence of a bracket with the number 0 in C, and therefore 

is the second occurrence of a bracket with the number 1 in [C 3 D], this 

makes the final bracket of A and the final bracket of C coincide, and so 

makes A and C identical. Finally, since it follows in all three cases that A 

and C are identical, it is then obvious that B and D must be identical. 

We do not continue further with proofs of particular theorems of Pi- 
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although there are many more theorems of the propositional calculus which 

will be of importance in later chapters. For all such theorems can be ob¬ 

tained by the more powerful method of the next section, to establish which 

the theorems and metatheorems that we already have are sufficient. Indeed 

in the next section we shall make direct use only of *100, *101, jl02, fl20, 

f 123, *130. fl40. f 142.** 143— other axioms, theorems, and metatheorems 

being used only so far as they contribute to the proof of these. 

EXERCISES 14 

14.O. Rewrite f 140 and f 142 in abbreviated form, using D2. D4, and D9. 

14.1. From the hypotheses/) and /> =5 q there is a proof of q, in one step 

by modus ponens. Hence by using the method provided in the proof of *130 

we may obtain a proof of the law of assertion, p z> . /> q z? q. Simplify this 

proof by deleting all unnecessary repetitions of the same wff or variants of 

it, also by using fl20and |102 in order to prove /iD.rDrina more direct 

manner. Present the resulting proof of the law of assertion in the style of 

§12, without making use of the deduction theorem or of theorems whose 

proof has been presented only by means of the deduction theorem. 

14.2. Present a proof of J140 without making use of the deduction 

theorem or of theorems whose proof has been presented only by means of 

the deduction theorem. (The proof of §14 is impracticably cumbrous when 

presented without the aid of the deduction theorem; nevertheless we may 

make heuristic use of the idea of applying, to the proof of -f 140 as presented 

in §14, the method provided in the proof of *130.) 

Present proofs of the following theorems in the style of §14, making use of the 

deduction theorem and of any theorems and metatheorems which have been 

Previously proved, either in the text or as exercises: 

I4*3* P^-q^rZD.p^iq^r 

I4*4* TD./iDrDr 

r4*5* 
I4*6* P ^ 9 => ['1 => s] - P =5 [rt z> s] => . z> . r2 => s 

I4*7* pvq=>qvp 

14.8. [pD?]v(pfl 

14.9. Establish the following four derived rules of directly—without 

use of *130 or of the notion of a proof from hypotheses: 

(1) If 1- B, then I-A1d1A1d1...a„dB. 

(2) If every wff which occurs at least once in the list A„ A2, .... A 
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also occurs at least once in the list Cv C2,... Cr, and if 1- A, 3 . A, id . 

. . . An Z) B, then h Cj id . C2 z> .... Cr id B. 

(3) If B is one of A„ A,.A„, then t-A,D . AjD .... A„d B. 

(4) If every wff which occurs at least once in the list A„ Aj,..A„, 

B,, B2, ..Bm also occurs at least once in the list Clf C2__ Cr> if 

h Ai id . Aj id .. .. An =5 A and h B! z> . B2 id .... Bm => . A => B, then 
I- Cj d . C, d .... Cr d B. 

Explain in detail how these derived rules may be used as a substitute 

for the deduction theorem in presenting proofs of theorems of Px. Illustrate 

by presenting proofs of the three theorems of §14 with the aid of these 

derived rules (and without the deduction theorem).181 

15. Tautologies, the decision problem. Let B be a wff of P2, let 

a1( a2, ..., an be distinct variables among which are all the variables occur¬ 

ring in B, and let ax, a2, .. ., an be truth-values (each one either t or f). 

We define the value of B for the values a,, a2,.. an of a1( a2,.... an by a 

recursion process which assigns values to the wf parts C of B, in order of 

increasing number of occurrences of id in C, as follow's. If C is /, the value of 

C is f; if C is a,, the value of C is a{\ if C is [Cj id C2], the value of C is t in 

case either the value of C2 is t or the value of C, is f, and the value of C is f 

in case the values of Cx and C2 are t and f respectively. By repetitions of 

this process a value, t or f, is ultimately assigned to B, and this we call the 

value of B for the values a,, a2,.... an of aj, a2,..., an. 

The uniqueness of the value of B for a given system of values of its 

variables follows as a consequence of **143. 

A wdf B of Pj is called a tautology if its value is t for every system of 

values of its variables (the values being truth-values), a contradiction if its 

value is f for every system of values of its variables. 

It will be seen that the foregoing recursion process, by which we obtain the 
value of B for a system of values of its variables, just follows the semantical 
rules given in §10 for the principal interpretation of P,. But in §10 we understood 
“denoting" and “having values” as known kinds of meaning, and we used the 

‘•‘These derived rules have a simpler character than that of the deduction theorem in 
the role of a derived rule. For, like our primitive rules of inference, they require 
premisses only certain asserted wffs, and, when these are given, the check of the in ere 
is effective. But when the deduction theorem is used as a derived rule, it is n^cess*rv 
submit a finite sequence of wffs not as asserted but as constituting a proo ro 

potheses, and only then is an effective check available. ^rfi^ipnt 
On the other hand these derived rules. 14.9 (l)-(4), may easily be ma e , 

substitute for the deduction theorem as a means of abbreviating the Pr^s . 
proofs. Advantages of the deduction theorem in this role are largely ps>c o ogi 

heuristic. 
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semantical rules in order to assign an interpretation to Pi as a language designed 

for meaningful communication. On the other hand in the present section we 

use the same rules, otherwise substantially unchanged, in order to define ab¬ 

stractly a correspondence called "having valuesbetween wffs (with given 

values of their variables) and truth-values. The word ''values" at its two italicized 

occurrences is meant as a newly introduced technical term, with no reference 

to the idea of meaning, and the correspondence is defined abstractly, or syn¬ 

tactically, in the sense that it may be used independently of what interpretation 

(if any) is assigned to the logistic system P,. Compare footnote 143. 

The process provided in the definition for obtaining the value of B for 

a given system of values of its variables is effective (see the discussion of 

the notion of effectiveness in §07, and footnotes 118, 119). Since a wff B 

can have only a finite number of variables, and hence only a finite number 

of systems of values of its variables, this leads to an effective process for 

deciding whether B is a tautology or a contradiction or neither. As an illus¬ 

tration of this algorithm, we show the following verification that fl03 is 

a tautology, adopting a convenient arrangement of the work that is due to 

Quine: 

s [p => . s =3 p => . $ => 

t t t t t t t t t t t t t 

t f t f f t t t t f t f f 

t t f t t t t f f t t t t 

t t f t f t t f f t t f f 

f t t t t t f t t t f t t 

f t t f f t f t t t f t f 

f t f t t t f t f t f t t 
f t f t f t f t f t f t f 

In detail the work is as foUows. First the wff |103 is written on one line. The 

three variables occurring in it are s, p, q; all possible systems of values of 

these variables are written down in the form of three columns of t’s and f’s, 

one column below the first occurrence of each of these variables in the wff. 

Then below each remaining occurrence of a variable in the wff is copied the 

same column of t’s and f’s that stands below its first occurrence. Then systems 

of values are assigned to the various wf parts of the entire wff, in order of 

increasing length of the parts, the system of values assigned to each part 

being written as a column of t’s and f’s below the principal implication sign 

° Partt.F°r exa™ple- the assigned to [fi zd q] appear in the col- 

below the s*0™* implication sign of the entire wff; the t at the top of 
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this column is obtained from the values t, t of p, q, in accordance with the 

rule given in the first paragraph of this section; the f next to the top of the 

column is obtained from the values t, f of p, q, in accordance with the same 

rule; and so on. Again, the values assigned to s z> [p => q] appear in the col¬ 

umn below the first implication sign of the entire wff; the t at the top of 

this column is obtained from the values t, t of p, [p zd q\, and so on. The 

reader should carry out the work in full and compare his result with that 

shown above. At the end of the work, the system of values of the entire 

wff appears in the column below its principal implication sign, and the fact 

that this column consists wholly of t’s shows the wff to be a tautology. 

A table showing the value of p id q for every system of values of />, q is 

called a truth-table of id. Like truth-tables may be calculated also for each 

of the notations introduced in D2-11; e.g., in accordance with D4, the truth- 

table of v will show the value of p id q id q for every system of values of p, q, 

as this is worked out by the rule given in the first paragraph of this section. 

The complete list of truth-tables, including that of id, is as follows: 

p ~p p 

n
 p^q pwq pq III P^Fl paq pispq m P\<1 

t f t t t f t t t i t f i i 

f t t f f f t j f f t t t f t 

f t t t t f f t f f f t 

f f t f f t f t f t t 

Though these truth-tables show explicitly, e.g., the value of p v q for 

given values of p and q, of course it is understood that they may be used 

with arbitrary wffs replacing the variables, e.g., to find the value of Cx v C, 

for given values of Cj and C2. 

When the above described algorithm for calculating the system of truth- 

values of a wff is to be applied to a wff abbreviated by means of Dl-11, the 

wff may be first rewritten in unabbreviated form and the algorithm then 

applied. In theoretical discussions we shall assume that this is done. But in 

practice it is more efficient to leave the wff in abbreviated form and to use 

the complete foregoing list of truth-tables. For example, the verification that 
% 

t=>pvq= .p$q$pq=> f 

is a tautology, using the abbreviated form of this wff, is arranged as 

follows: 



§15] TAUTOLOGIES, THE DECISION PROBLEM 97 

tZ3pvq = .p$q$p q=>f 

t f t f t t t f t t t t t f f 

t f t f f t t t f t t f f f f 

t f f f t t f t t t f f t f f 

t t f t f t f f f f f f f t f 

We now prove the metatheorem: 

*•150. Every theorem of Px is a tautology. 

Proof. We first establish the following lemma: If a1( a2> . . ., ani b are 

distinct variables among which are all the variables occurring in A and all those 

occurring in B, and if, for the values a„ a2.an, a of ap a2.a„, b, the 

value of B is b and the value of SBA| is c, then the value of A for the values 

av az.an. b of a,. a2.a„, b is c. 

The lemma is obvious if A consists of a single symbol. And we then pro¬ 

ceed by mathematical induction with respect to the total number of occur¬ 

rences of 3 in A. If A is A, 3 A2. then S*A| is S|A,| 3 S|A2|. Suppose 

that, for the values av a2, . .., an, a of a,, a2.an, b, the value of B is b, 

and the value of S|A| is c, and the value of S^AJ is cv and the value of 

SbA2| is c2. Then c is f, if cx is t and c2 is f; and c is t in all other cases. By the 

hypothesis of induction we have, for the values ax, a2.an, b of a1( a2. 

an, b, that the value of At is cx and the value of A2 is c2, hence the value of 

A is f if Cj is t and c2 is f, and the value of A is t in all other cases; i.e., the 
value of A is c. 

The lemma then follows by mathematical induction.—For the rule of 

substitution, *101, we have as an immediate consequence of the lemma that, 

if the conclusion S* A| has the value f for some system of values of the 

variables, then the premiss A must have the value f for some system of val¬ 

ues of the variables. Therefore if the premiss A of *101 is a tautology, the 

conclusion SBA| must be a tautology. 

For the rule of modus ponens, *100. if the minor premiss A is a tautology 

and if the conclusion B has the value f for some system of values of the 

variables (of A and B). then for the same system of values of the variables 

it follows directly from the definition of the value of a wff that the value 

of the major premiss A 3 B is f. Therefore if both premisses of *100 are 

tautologies, the conclusion must be a tautology. 

We have thus shown that the two rules of inference of P, preserve tautol¬ 

ogy in the sense that, if the premiss or premisses are tautologies the 

conclusion ,s a tautology. We leave it to the reader to verify that the three 
axioms of P2 are tautologies. **150 then foUows. 
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*151. Let B be a wff of Pj. let a1( aj,..., a„ be distinct variables among 

which are all the variables occurring in B. and let av at,.... an be 

truth-values. Further, let A, be a, or a, 3 / according as a, is t or f; 

and let B' be B or B 3 / according as the value of B for the values 

<h- ai.of aj, aj-, an is t or f. Then A„ Aj.An h B'. 

In order to prove that 

(1) A^Aj.An I- B' 

we proceed by mathematical induction with respect to the number of occur¬ 

rences of 3 in B. 

If there are no occurrences of 3 in B, then B is either / or one of the vari¬ 

ables a,. In case B is /, we have that B' is / 3 /, and hence (1) follows by 

substitution in an appropriate variant of 1120. In case B is a,, we have that 

B' is the same wff as A,, and (1) follows trivially, the proof of B' from the 

hypotheses A,, Aj.A„ consisting of the single wff B'. 

Suppose that there are occurrences of 3 in B. Then B is Bj 3 Bt. By the 

hypothesis of induction, 

(2) 

(3) 

Aj, Aj, • • *, An h B1( 

Aj, Aj, . . ., An h Bg, 

where Bj is B, or Bt 3 / according as the value of B, for the values flj, 

aj, .... an of a,, a2,..., a„ is t or f, and Bj is B2 or B2 3 / according as the 

value of Bj for the values a,, at,..., an of alP a,__ a„ is t or f. In case 

Bj is Bj. we have that B' is Bj 3 B2, and (1) follows from (3) by substitution 

in an appropriate variant of f 102 and modus pontns. In case Bjis Bj 3 /, 

we have again that B' is Bj 3 B2, and (1) follow’s from (2) by substitution in 

an appropriate variant of |123 and modus pomns. There remains only the 

case that Bj is Bj and Bj is B2 3 /, and in this case B'isBj 3 B23/,and (1) 

follows from (2) and (3) by substitution in an appropriate variant of 

and two uses of modus potuns. 

Therefore *151 is proved by mathematical induction. 

The proof of *151 is effective in the sense that it provides an effective 

method for finding a proof of B' from the hypotheses Alf Aj, . . .. A*. II 

B has no occurrences of 3, this is provided directly. If B has occurrences 0 

3, the proof provides directly an effective reduction of the problem of finding 

a proof of B' from the hypotheses A,, A2.An to the two problems 0 

finding proofs of Bj and Bj from the hypothesis Ax, A2, . . .. A„, the same 

reduction may then be repeated upon the two latter problems, and so on, 
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after a finite number of repetitions the process of reduction must terminate, 

yielding effectively a proof of B' from the hypotheses Ax, A2, . . An. 

We now go on to proof of the converse of **150, which will also be effec¬ 

tive. 

*152. If B is a tautology, h B. 

Proof. Let at, a2.a„ be the variables of B, and for any system of 

values av ait. . ., an of a„ a2.an let Alf A2__ An be as in *151. The 

B' of *151 is B, because B is a tautology. Therefore, by *151, 

Aj, Aj,..., An h B. 

This holds for either choice of an, i.e., whether a„ is f or t, and so we have 

both 

Aj, A2> ..., An_j, an Z5 / f- B 

and 

Ai» A2,..., A„_|, an h B. 

By the deduction theorem, 

A1( At>..An_1 I" an id / id B, 

• • •» An_j h an id B. 

Hence, by substitution in an appropriate variant of fl42 and two uses of 
modus ponens, 

Ap A2, ..An-1 h B. 

This shows the elimination of the hypothesis An. The same process may 

be repeated to eliminate the hypothesis A*.,, and so on, untU all the hypoth¬ 
eses are eliminated.182 Finally we obtain h B. 

The decision problem of a logistic system is the problem to find an effective 

procedure or algorithm, a decision procedure, by which, for an arbitrary wff 

o the system, it is possible to determine whether or not it is a theorem (and 

u it is a theorem to obtain a proof of it183). 

°f th' P">°' ** * —- induction 

,hiS i00M alWa^ •* i"d«ded cxplic- 

tions to this are^l/tiwit a procethlre °( 411 Proofs. Possible objec* 

•» is a predictable upper '££££%%£ 
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The effective procedure for recognizing tautologies, as described at the 

beginning of this section, and the effective proofs which have been given 

of **150 and *152, together constitute a solution of the decision problem of 
the logistic system P1# 

This solution of the decision problem of Pl does not depend on any particular 

interpretation of Px. Being purely syntactical in character it may be used under 

any interpretation of P,, or even if no interpretation at all is adopted. 

The decision problem in this sense we call more fully, the decision problem 

for provability, in a logistic system, or in a formalized language obtained by 
interpretation of the logistic system. 

In the case of a formalized language there is also the semantical decision 

problem, as we shall call it, namely, to find an effective procedure for determining 

of an arbitrary sentence whether it is true in the semantical sense (§§04, 09), 

and of an arbitrary propositional form whether it is true for all values of its 

variables.184 For the formalized language which is obtained by adopting the 

principal interpretation of P,, the semantical decision problem is trivial, because 

the semantical rules, given at the end of §10, directly provide the required 

effective procedure. 7 his triviality of the semantical decision problem, however, 

by no means holds for formalized languages in general, as the definition of truth 

contained in the semantical rules is often non-effective. 

The decision problem for provability, as we have seen, is non-trivial even in 

the relatively simple case of the system P,. 

In view of the solution of the decision problem of Plf the explicit presenta¬ 

tion of proofs of particular theorems of P, is now no longer necessary. When¬ 

ever we require a particular theorem of P1# it will be sufficient that we just 

write it down, leaving it to the reader to verify that it is a tautology and 

hence to find a proof of it by applying the procedure which is given in the 

proofs of *152 and *151. In particular we now add, on this basis, the five 

following theorems of Px: 

and (2) that not only the decision procedure itself ought to be effective, but also the 

demonstration of it ought to be effective in the sense that it proceeds by effectively 

producing the proof of the wff (when the proof exists). But these objections are not easy 
to maintain. Indeed the restriction on the notion of effectiveness, as proposed in (1), is 

vague, and the writer does not know how to make it definite without excluding proce¬ 

dures that must obviously be considered effective by common (informal) standards. 

The requirement proposed in (2) is in the direction of mathematical intuitionism sec 

Chapter XII—and must be regarded as radical from the point of view of classical mathe- 

matics. , 
184The writer once proposed the name “deducibility problem" for what is here e 

the decision problem for provability, the intention being to reserve the name decision 

problem" either for the semantical decision problem or for what is called in §4 c 

decision problem for validity. It seems better, however, to use "decision problem as 

general name for problems to find an effective criterion (a decision procedure) *2rs?. 
thing, and to distinguish different decision problems by means of qualifying a jec i 

or phrases. 
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f 153. tz>p = p 

1154. —p = p 

f 155. p = q z> . q = /> 

f 156. p = q ,p => q 

fl57. p = qz5.q = r^).p = r 

1154 is the complete law of double negation (cf. footnote 163). -f 155 is the 

commutative law of [material) equivalence, and f 157 is the transitive law of 

(material) equivalence. 

Proofs of metatheorems of Px are also often greatly simplified by the solu¬ 

tion of the decision problem. This is true, for example, in the case of the 

following: 

*158. If B results from A by substitution of N for M at one or more places 

in A (not necessarily for all occurrences of M in A), and if h M = N, 

then I- A = B. 

Proof. Let a,, a2,..an be the complete list of variables occurring in 

A and B together. Since M = N is a theorem, it is a tautology. Therefore, 

by the truth-table of =, M and N have the same value for every system of 

values of a1( a2, . .., an. Since B is obtained from A by substitution of N 

for M at certain places, it follows that A and B have the same value for 

every system of values of a1( a2.an (details of the proof of this, by 

mathematical induction with respect to the number of occurrences of r, in 

A, are left to be supplied by the reader, using the result of exercise 12 1) 

Therefore, by the truth-table of = we have that A = B is a tautology 
Therefore by *152, I- A = B. 

As a corollary we have also: 

*159. If B results from A by substitution of N for M at one or more places 

m A (not necessarily for all occurrences of M in A), if h M = N 

and b A, then h B. (Rule of substitutivity of equivalence.) 

Theref°re by t156’ subs,itu‘i0". “d modus 
ponens, h A B. Slnce H A. we have by another use of modus ponons that 
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EXERCISES 15 

15.O. Verify the following tautologies: 

(1) The wffs of 14.4 and 14.5. 

(2) The wff of 14.6. 

(3) u u ■ u ■
 u (Law of exportation.) 

(4) U
 

■ u 
y
—

t
 

U
 

•
 u (Law of importation.) 

(5) 

n • 

n
 

n 

n 
a

 (Law of composition.) 

(6) />3p.«p^) (Law of contraposition.) 

(7) P = ?=•? = P (Complete commutative law of equivalence.) 

(8) The transitive law of equivalence, 1157. 

(9) 
• 

~ .p ~p (Law of contradiction.) 

(10) ps~p (Law of excluded middle.) 

15.1. Determine of each of the following wffs whether it is a tautology or 

a contradiction or neither: 

(1) 

(2) ^Dp[os]D^DrD.ps 

(3) / 3/3./ID/3/ 

(4) p = q = pvq=~pv~q 

15.2. Prove: If B results from A by substitution of N for M at one or 

more places in A (not necessarily for all occurrences of M in A), then 

[MeNd.AeB, 
15.3. Present proofs of f 154 and f!56 in the style of §14, not using 

methods or results of §15. 

15.4. A wff B which contains n different variables is said to be in im¬ 

plicative normal form if the following conditions are satisfied: (i) B has the 

form Cj z> . C, Cm 3 /; (ii) each C{ (i =1,2,..., m) has the form 

Cn 3 . C<a 3 .... C(n 3 /; (iii) each Cik (i =1,2.m and k = 1. 

2, . . ., n) is either bk or ~bk, where bk is the k*h of the variables occurring 

in B, according to the alphabetic order of the variables (§10); (iv) the 

antecedents C, are all different and are arranged among themselves according 

to the rule that, if Cn, C<2,..., C<(k_j, are the same as Cn, C/2,..., C;(*_„ re¬ 

spectively, and C<k is bk, and C,k is ~bk, then i < j. Show that for every wff 

A there is a unique corresponding wff B (the implicative normal form of A) 

such that B is in implicative normal form, and each C< contains the same 

variables that A does, and h A = B. (Make use of the values of the given wff 

A for the various systems of values of its variables, in order to determine B 

in such a way that A = B is a tautology.) 

What is the implicative normal form of a tautology containing the n 



§15] EXERCISES 15 103 

different variables b,. b2.bn, and no other variables? Of a contradiction 

containing these variables and no others? 

What are the possible implicative normal forms of a wff containing no 

variables? Of a wff containing just one variable? Of a wff containing just 

two (different) variables? 

15.5. Show that P,is a commutative ring, with equivalence as the ring 

equality, non-equivalence as the ring addition, and conjunction as the ring 

multiplication, in the sense that the following analogues of the ring laws 

are tautologies and therefore theorems of Px: 

P^q= .q^p pq = qp 

P^[q^r] = .p^q^r p[qr] = pqr 

P$q = r cz.q = .p$r p[q =$= r) = . pq =$E pr 

Identify the ring subtraction (cf. the third law of those above). Also identify 

the zero element and the unit element of the ring. 

15*6. In a like sense, show further that Pj is a Boolean ring by verifying 

the tautologies:185 

p^P = f 
pp = p 

I5*7» 1° a like sense, show that Px is a Boolean ring with equivalence as 

the ring equality, equivalence as the ring addition, and disjunction as the 

mThe reader must be careful not to misunderstand the assertions made in 15.6-15.8. 
In 15.6, e.g., it is meant that, with equivalence in the role of equality, non-equivalence 
in the role of addition, and conjunction in the role of multiplication, the defining laws 
for a Boolean ring appear as theorems of P,, and hence also all laws of Boolean rings 
which are derivable from these by methods of the propositional calculus (including 
the rule of substitution, *101, and the rule of substitutivity of equivalence, *159). 
There is no question of a ring in the sense of a particular system of elements and opera¬ 
tions on them obeying the ring laws, until we deal with a particular interpretation of P,. 
If we allow interpretations that are sound in the generalized sense of §19, then many 
sound interpretations of Pt do turn out to be Boolean rings (with equivalence in the 
role of equality, etc.) in the sense of a particular system of elements and operations; 
but it is not true that every sound interpretation 0/ ?! is a Boolean ring in this sense—or 
better, in view of cases like those of exercises 19.11 and 19.12, it is not easy to decide 
°n a generally satisfactory meaning for the italicized statement. 
««Mnder»ltS p,r‘nc.lPal interpretation, P, is not merely a Boolean ring, but a two-element 
Held, with addition and multiplication identified in the way described in 15 6 This 
remark^ and its application to formal work in the propositional calculus, is’due to 
L iS nnVoa t Mathimatique de la Sociiti MathSmatique de Moscou. vol. 

9_28' Toany one famil,ar w>th the procedures of elementary algebra 

te™ VCry C°remenV° rewrite a11 exPressions of the propositional calculus in 
tenns of non-equivalence and conjunction as fundamental connectives, using also 0 and 
I as propositional constants, and writing the sign + instead of i 

ihe term Boolean nng. now standard, is due to M. H. Stone (1936). 
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nng multiplication. Identify the ring subtraction, and the zero element and 
the unit element of the ring.188 

15-8. In a like sense, P, is also a Boolean algebra, again with equivalence 

in the role of equality, and with disjunction and conjunction identified as 

the Boolean sum and Boolean product respectively.187 Verify the following 

tautologies that are implied in this statement: the complete distributive law 

of conjunction over disjunction , the complete distributive law of disjunction over 

conjunction; the two laws of absorption, 

pvpq = p, 

p[J>yq]= p, 

and the two laws of De Morgan,m 

~[pvq] = ~p ~q, 

~[pq] = ~/> v ~q. 

I5»9* Various works on traditional logic treat of certain kinds of inferences, 
known as hypothetical syllogisms, disjunctive syllogisms, and dilemmas. These 
are stated verbally, and include:18* 

Hypothetical Syllogism 

Modus ponens: If A then B. A. Therefore. B. 
Modus tollens: If A then B. Not B. Therefore, not A. 

188This is the dual (in the sense of §18) of the remark of 15.5, 15.6. It was used by 
Jacques Herbrand in his dissertation of 1930, independently of G^galkine, and again 
by Stone in 1937. It provides another method, dual to that of the preceding footnote, 
by which procedures of elementary algebra may be utilized for propositional calculus; 
namely, all expressions of the propositional calculus are rewritten in terms of equiva¬ 
lence and disjunction as fundamental connectives, together with the constants 0 and 1, 
and the usual signs of addition and multiplication are employed instead of = and V 
respectively. (Compare exercise 24.3.) 

The laws pp = p and its dual are known as the laws of tautology. though this is quite 
a different sense of the word "tautology” from that introduced in the text. From the 
point of view of ring theory they might also be called idempotcnt laws. 

167This remark is implicit already in Peirce's paper of 1885, cited in footnote 67. 
("Peirce's law" of 12.6 is also found in this paper.) 

,(,,Not these laws but the corresponding law's of the class calculus were enunciated 
by Augustus Dc Morgan in his Formal Logic of 1847. 

In verbal formulation these laws of the propositional calculus were known already 
to the Scholastics, perhaps first to Ockham. Cf. a paper by Lukasiewicz in Erkenntnis, 
vol. 5 (1935), pp. 111-131, in which some rudiments of the propositional calculus are 
traced back not only to the Scholastics but to antiquity—material implication in partic¬ 

ular, to Philo of Megara. And concerning the history of the De Morgan laws among 
the Scholastics, see further Philotheus Boehncr in Archiv fur Philosophic, vol. 4 

(1951), pp. 113-146. 
,MWe make no attempt to enter into the history of the matter, but have merely 

compiled a representative list from a number of comparatively recent works of tradi¬ 
tional character. Some discrepancies will be disclosed if parts (1) and (2) of the exerase 
are carried through. These may be attributed partly to uncertainties of meaning, par y 

to disagreements among different writers. 
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Disjunctive Syllogism 

Modus tollendo ponens: A or B. Not A. Therefore, B. 

Modus ponendo tollens: A or B. A. Therefore, not B. 

Dilemma 

Simple constructive: If A then C. If B then C. A or B. Therefore, C. 

Simple destructive: If A then B. If A then C. Not B, or not C. Therefore, not A. 

Complex constructive: If A then B. If C then D. A or C. Therefore, B or D. 

Complex destructive: If A then B. If C then D. Not B, or not D. Therefore, 

not A, or not C. 

The letters A. B. C, D are here replaceable by sentences1*0—indeed we might 

have used bold letters (under the conventions of §08) except for the lack of a 

definite object language to which they could be understood to refer. Some 

writers are in disagreement among themselves, and others are unclear, (a) as 

to whether the words “if . . . then” mean material implication or some other 

kind of implication, and (b) as to whether the word “or” means exclusive dis¬ 

junction or inclusive disjunction. (Cf. §05.) 

(1) On the assumption that “if . . . then” means material implication and 

"or” means exclusive disjunction, the leading principle of, e.g., the simple de¬ 

structive dilemma is 

p=>q => .p zd r 

On this assumption, write in the same manner the leading principle of each of 

the kinds of inference listed. Check each of the kinds of inference by ascertaining 

whether its leading principle is a tautology. (Wherever possible, of course, make 

use of known theorems of Pt in order to shorten the work.) 

(2) On the assumption that “if . . . then” means material implication and 

"or” means inclusive disjunction, again write the leading principle of each of 

the kinds of inference, and check in the same way.101 

I5.IO. When Sancho Panza was governor of Barataria, the following case 

came before him for decision. A certain manor was divided by a river upon which 

was a bridge. The lord of the manor had erected a gallows at one end of the 

bridge and had enacted a law that whoever would cross the bridge must first 

swear whither he were going and on what business; if he swore truly he should 

be allowed to pass freely; but if he swore falsely and did then cross the bridge 

he should be hanged forthwith upon the gallows. One man, coming up to the 

other end of the bridge from the gallows, when his oath was required swore, 

"I go to be hanged on yonder gallows,” and thereupon crossed the bridge. The 

vexed question whether the man shall be hanged is brought to Sancho Panza, 

who is holding court in the immediate vicinity, and who is of course obligated 

to uphold the law as validly enacted by the lord of the manor.1** 

jJ?’!1® tra^lt,.onal assumption that the sentences must have the subject-predicate 
form is omitted as irrelevant. 1 v 

hyppthetical and disjunctive syllogisms, the question of reproduction in 
the notation of the propositional calculus is discussed by S. K. Langer in an aDDendix 
to her Introduction to Symbolic Logic (1937) * g n an appendix 

dais? 0nly Very SU8hUy ra°dl,ied as given by Mignel 
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Let P, Q, R. S be constants expressing the propositions, respectively, that he 
[the man in the story] crosses the bridge, that he is hanged on the gallows 
that the oath to which he swears is tme, and that the law is obeyed. Use a formu¬ 

lation of the propositional calculus containing these four propositional constants, 
as well as propositional variables. Then the given data are expressed in the three 

Rtn P®’ P‘ S = ® ~ P~R (Notice ^ particular that to replace the 
third wff by S zd . P ~R 3 Q would not sufficiently represent the data, since 
we must suppose that it is as much a violation of the law to hang an innocent 
man as it is to let a guilty one go free.) 

Verify the tautology, 

r = Pq^.pn.s^[q = p ~r] zo ~s, 

and hence by substitution and modus ponens demonstrate that the law cannot 
be obeyed in this instance. 

16. Duality. The process of dualization is most conveniently applied, 

not to wffs of P, but to expressions which are abbreviations of wffs of Pj 

in accordance with Dl-11 (but without any omissions of brackets). The dual 

of such an expression is obtained by interchanging simultaneously, wherever 

they occur, the letters t and /, and each of the following pairs of connectives: 

and <£, disjunction and conjunction, = and a and :$>, v and |. The 

symbol (connective), is left unchanged by dualization, and is therefore 

called sell-dual. The letters t and / are called duals of each other; likewise 

the connectives conjunction and disjunction; likewise zd and c£; etc. 

Thus, e.g., the dual of the expression 

[[[P V t) :z> [qr]] = [r v -/>]] 

is the expression 

[[[/>/] $ [q vr]] =f= [r ~p]). 

A dual of a wff of Px is obtained by writing any expression of the foregoing 

kind which abbreviates the wff, dualizing this expression, and then finally 

writing the wff which the resulting expression abbreviates. It is not excluded 

that the wff itself may be used in the role of the expression which abbre¬ 

viates it, and when this is done the principal dual of the wff is obtained. For 

example, the wff 

0P^q)=> f) 

has as its principal dual the wff 

[[P$q)<t t], 

i.e., the wff 

[[[/=>/]=>[[? = « = /]] = /]; 

but because the same wff, 
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[[* = ?] = /]• 

may also be abbreviated as [q cj: />], it has also the wff 

[Pfl 
as a dual. 

Except in the case of a wff consisting of a variable alone, the principal dual 

of the principal dual of a wff is not the same as the wff itself. However, of 

course the wff itself is always included among the various duals of any one of 

its duals. And any dual of a dual of a wff is equivalent to the wff in the 

sense of *160 below. 

In order to minimize the variety of different duals of a given wff, Dl-11 

have been arranged as far as possible in pairs dual to each other. But this 

could not be done in the case of Dl-3, and it is from these three that the 

possibility arises of different duals of the same wff. By examining Dl-3, 

it may be seen that any two duals of the same wff can be transformed one 

into the other by a series of steps of the four following kinds: replacing a wf 

part« d N by N, replacing a wf part N by / z> N, replacing a wf part — N 

by N, and replacing a wf part N by — N. By fl53, fl54, fl55, *158, f 157 

(together with substitution and modus ponens) it therefore follows that any 

two duals of the same wff are equivalent in the following sense: 

*160. If B and C are duals of A, h B = C. 

In the truth-tables in §15 it will be seen that the truth-table for is 

transformed into that for cj: if t and f are interchanged throughout (in all 

three columns of the table). In fact, if t and f are interchanged, the truth- 

tables for and c£ are interchanged; likewise those for disjunction and con¬ 

junction; likewise those for = and likewise those for cz and ifo; likewise 

those for v and |; and the truth-table for ~ is transformed into itself. From 

this it follows that the dual of a tautology is a contradiction. Hence, in view 

of the truth-table for negation, there follows the metatheorem: 

•161. If h A, if Aj is a dual of A, then h —A1. (Principle of duality.) 

Two corollaries of *161, special principles of duality, are obtained by 
means of the tautologies: 

fl62. ~[p<£q]=)mq=>p 

1153. ~[fi q] mp = q 

These corollaries of *161 are: 
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*164. 

*165. 

17. 

The notion of consistency of a logistic system is semantical in motivation, 

arising from the requirement that nothing which is logically absurd or self¬ 

contradictory in meaning shall be a theorem, or that there shall not be two theo¬ 

rems of which one is the negation of the other. But we seek to modify this orig- 

inally semantical notion in such a way as to make it syntactical in character 

(and therefore applicable to a logistic system independently of the interpretation 

adopted for it). This may be done by defining relative consistency with respect to 

any transformation by which each sentence or propositional form A is trans¬ 

formed into a sentence or propositional form A', the definition (given below) 

eing such that relative consistency reduces to the semantical notion of con- 

sistency under an interpretation that makes A' the negation of A. Or we may 

define absolute consistency by the condition that not every sentence or propo¬ 

sitional form shall be a theorem, since in the case of nearly all the systems with 

which we shall deal it is easy to see that, once we had two theorems which were 

negations of each other, every sentence and propositional form whatever could 

be proved (e.g., in the case of P, this follows by f 123, substitution, and modus 

ponens). Or, following Hilbert, we might in the case of a particular system 

select an appropriate particular sentence and define the system as being con¬ 

sistent if that particular sentence is not a theorem (e.g., we might call Pi 

consistent on condition that / is not a theorem). Or if the system has prop¬ 

ositional variables, we may define it as being consistent in the sense of Post1*1 

if a wff consisting of a propositional variable alone is not a theorem. 

Turning now to the purely syntactical statement of the matter, we have 

the following: 

(a) A logistic system is consistent with respect to a given transformation 

by which each sentence or propositional form A is transformed into a sen¬ 

tence or propositional form A', if there is no sentence or propositional form 

A such that (- A and b A'. 

(b) A logistic system is absolutely consistent if not all its sentences and 

propositional forms are theorems. 

(c) A logistic system is consistent in the sense of Post (with respect to a 

,,JE. L. Post in the American Journal o/ Mathematics, vol. 43 (1921), see p. 177. 
The notion of absolute consistency is, in view of the rule of substitution, closel) 

related to that of consistency in the sense of Post; it seems to have been first used ex¬ 

plicitly as a general definition of consistency by Tarski (Monatshefte /ur MathtmaitR 
und Physik, vol. 37 (1930), see pp. 387-388). A similar remark applies to the notion 

of absolute completeness (cf. Tarski, ibid., pp. 390-391). 

^ ^ ^ ^ ^ anc* ®i are duals of A and B respectively, then 

h Bl 13 A>- (Special principle of duality for implications.) 

^ A = ^ an<^ are duals of A and B respectively, then 

b A, = B,. (Special principle of duality for equivalences.) 

Consistency. 
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certain category of primitive symbols designated as “propositional vari¬ 

ables”) if a wff consisting of a propositional variable alone is not a theorem. 

•*170. P! is consistent with respect to the transformation of A into Ad/, 

Proof. By the definition of a tautology (and the truth-table of =>), not 

both A and A id / can be tautologies. In fact, if A is a tautology, then A => / 

is a contradiction. Therefore by **150, not both A and Ad / can be theorems 

of Pj. 

**171. Pt is absolutely consistent. 

Proof. The wff / is not a tautology, and therefore by **150 it is not a 

theorem of Pj. 

**172. Pj is consistent in the special sense that / is not a theorem. 

Proof. The same as for **171. 

**173. Pt is consistent in the sense of Post. 

Proof. A wff consisting of a propositional variable alone is not a tautology, 

because its value is f for the value f of the variable. Therefore by **150, 

it is not a theorem of P,. 

18. Completeness. 

As in the case of consistency, the notion of completeness of a logistic system 

has a semantical motivation, consisting roughly in the intention that the system 

shall have all possible theorems not in conflict with the interpretation. As a 

first attempt to fix the notion more precisely, we might demand of every 

sentence that either it or its negation shall be a theorem; but since we allow the 

assertion of propositional forms (see the concluding paragraphs of §06), this may 

prove insufficient. Therefore, following Post,"* we are led to define a logistic 

system as being complete if, for every sentence or propositional form B, either 

1- B or the system would become inconsistent upon adding B to it as an axiom 

(without other change). This leads to several purely syntactical definitions of 

completeness, corresponding to the different syntactical definitions of con¬ 
sistency of a system as given in the preceding section. 

Another approach starts from the idea that a system is complete if there is a 

sound interpretation under which every sentence that denotes truth is a theorem 

and every propositional form that has always the value truth is a theorem_ 

then seeks to replace the notion of an interpretation by some suitable syntactical 

notion. This approach, however, requires certain restrictions on the character 

of the interpretation allowed, and thus leads to the introduction of models in 
the sense of Kemeny. It will be discussed briefly in Chapter X. 
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As syntactical definitions of completeness we have, for the present, the 
following: 

(a) A logistic system is complete with respect to a given transformation by 

which each sentence or propositional form A is transformed into a sentence 

or propositional form A', if, for every sentence or propositional form B, 

either V B or the system, upon addition of B to it as an axiom, becomes 

inconsistent with respect to the given transformation. 

(b) A logistic system is absolutely complete if, for every sentence or prop¬ 

ositional form B, either I- B or the system, upon addition of B to it as an 

axiom, becomes absolutely inconsistent. 

(c) A logistic system is complete in the sense of Post if, for every sentence or 

propositional form B, either I- B or the system, upon addition of B to it as 

an axiom, becomes inconsistent in the sense of Post. 

Let B be a wff of Pj which is not a theorem. Then by *152, B is not a 

tautology. I.e., there is a system of values of the variables of B for which the 

value of B is f. 

If B is added to Pt as an axiom, it becomes possible by *121 to infer the 

result of any simultaneous substitution for the variables of B. In particular, 

we may take one of those systems of values of the variables of B for which 

the value of B is f, and substitute for each variable a, either t or / according 

as the value a, of that variable is t or f. Let E be the wff which is inferred in 

this way. 

Since E contains no variables, the definition at the beginning of §15 

assigns one value to E, and because of the way in which E was obtained from 

B it follows that this value isf (the explicit proof of this by mathematical 

induction is left to the reader). Therefore by the truth-table of 3, E 3 / is 

a tautology. Thus by *152, we have that E 3 / is a theorem of Pj, therefore 

also a theorem of the system which is obtained by adding B to Pt as an 

axiom. 

In the system obtained by adding B to P, as an axiom we now have that 

both E and E 3 / are theorems. Therefore by modus potions we have that / 

is a theorem. Therefore by f 122 and modus ponens, p is a theorem. Thence 

by substitution we may obtain any wff whatever as a theorem, including, of 

course, with every wff A, also the wff A 3 /. 

Thus we have proved the completeness of Px in each of the three senses. 

**180. ^ is complete with respect to the transformation of A into A 3 /• 

**181. Px is absolutely complete. 

**182. P, is complete in the sense of Post. 
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EXERCISES 18 

Discuss the consistency and completeness of each of the following logistic 

systems, in each of the senses of **170-**173, **180-**182: 

18.0. The system obtained from P, by deleting the axiom fl04. (Show 

that a wff A containing occurrences of / is a theorem if and only if A| 

is a theorem, where a is a variable not occurring in A.) 

18.1. The primitive symbols and the formation rules are the same as 

those of Pj. There is one axiom, namely p. There is one rule of inference, 

namely *101 with the restriction added that B must not be /. 

18.2. The primitive symbols and the formation rules are the same as 

those of Pj. There is one axiom, p r> q, and one rule of inference, *101. 

18.3. The system Pg obtained from the system Pw of 12.7 by deleting / 

from among the primitive symbols, and making only such further changes 

as this delection compels, namely, omitting the formation rule lOi and the 

fourth axiom, fl22. (Make use of the results of 12.7 and 12.8; prove an ana¬ 

logue of *151 in which a variable r is selected, different from a„ a2, . .., an, 

and A< is defined to be a, or a( zd r according as a{ is t or f, and B' is defined 

tobeBDrDrorBur according as the value of B for the values a1, a2, 

• • •» an of a„ a2,-an is t or f; and hence prove that *162 holds for Pg. 

In place of **170 and **180, show that Pg is consistent and complete with 

respect to the transformation of A into A => a, where a is the first variable 

in alphabetic order not occurring in A.) 

18.4. The system P[ having the same primitive symbols and wffs as Pg. 

the same rules of inference, and the single following axiom: 

p=>q=>rz2mr=)p=>ms=>p 

(After verifying that this axiom is a tautology, we may prove the axioms 

of P{j as theorems of P[, and then use the results of 18.3. For this purpose, 

first establish the derived rules, that if h A 3 B d C, then hCD Ad. 

a=>A,l-aD ADCD.bDC.hBDC; then following Lukasiewicz, prove 

r => ?=> . r => ?z> />=> . s n p, 

Pi=3r=> [sd>/»]z> .r=>q=>p=> ms=>p, 

r=>q=>[s=>p)=> .r=>p=> ,s=>p, 
r => p => [s => p] => [p 3 q z> r pj ^ . qx , p q ^ 

r=>P=>P=>[s=>p]z>mp=>q=>r=>.s:Dpi 
P=>r=>q=>q=3mq=)r=)mp->ri 

P=>q=>.p=>r=>qziq, 

and the transitive law of implication, in order, as theorems of P[.) 
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i8*5* By means of semantical rules similar in character to a-g of §10, supply 

sound interpretations of the systems of 18.0-18.3, and discuss for each system 

the possible variety of sound interpretations of this sort. 

19. Independence.194 An axiom A of a logistic system is called independ¬ 

ent if. in the logistic system obtained by omitting A from among the axioms, 

A is not a theorem. A primitive rule of inference R of a logistic system is 

called independent if, in the logistic system obtained by omitting R from 

among the primitive rules, R is not a derived rule. Or equivalently, we may 

define an axiom or rule of inference to be independent if there is some theo¬ 

rem which cannot be proved without that axiom or rule.195 

It should not be regarded as obligatory that the axioms and rules of 

inference of a logistic system be independent. On the contrary there are 

cases in which important purposes are served by allowing non-independence. 

And if the requirement of independence is imposed, this is as a matter of 

elegance and only a part of the more general (and somewhat vague) require¬ 

ment of economy of assumption.198 

In this book we shall often ignore questions of independence of the axioms 

and rules of a logistic system. But for the sake of illustration we treat the 

matter at length in the case of Px. 

In the propositional calculus a standard device for establishing the in¬ 

dependence of axioms and rules is to generalize the method of §15 as follows. 

Instead of two truth-values, a system of two or more truth-values, 

0, 1,..., v, 

is introduced,197 the first p of these, 

0, 1,. . .,fx, 

‘•‘The reader who wishes to get on rapidly to logistic systems of more substantial 

character than propositional calculus may omit §19 and all of Chapter II excep 

§§20-23, 27. Especially §§26, 28 and the accompanying exercises may well be post- 

poned for study in connection with later chapters. 
mIn the case of rules of inference, the equivalence of the two definitions of lnacpen- 

ence depends on considerations like those adduced in footnote 183 to show tha e 

conditions of effectiveness which we demand of a primitive rule of inference are su 1C*£ 
to ensure that, when the same rule is demonstrated as a metatheorem of some o 

system, the required conditions of effectiveness for derived rules of in eren*je.^j. . 
will therefore be satisfied. In what follows, we shall make use only of the second denni- 

tion of independence of a rule of inference, viz., that the rule is indepen en i 

at least one theorem which cannot be proved without it. , . , Ant 
The possibility should be noticed that a rule of inference not previously mdepen 

may become so when additional axioms are adjoined to a logjstic sys em. 

••‘The requirement of economy of assumption is usually understood to con 

the length and complication (or perhaps the strength, in some sense) o 1 

and axioms—in addition to merely the number of them. . . th vaiues 
,,7It is convenient in practice to use numerals in this way to denote the tr a 

though analogy with the notation used in the case of two truth-values would suggest 
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(where 1 ^ fi < v) being called designated truth-values.198 To each of the 

primitive constants (if any) is assigned one of these truth-values as value, 

and to each primitive connective is assigned a truth-table in these truth- 

values. Analogously to the first paragraph of §15 is defined the value of a 

wff for given values of its variables, the possible values of the variables 

being the truth-values 0, 1, .... v, and a wff is called a tautology if, for every 

system of values of its variables, it has one of the designated truth-values as 

its value. If then every rule of inference has the property of preserving 

tautologies (i.e., that the conclusion must be a tautology when the premisses 

are tautologies) and every axiom but one is a tautology, it follows that the 

one axiom which is not a tautology is independent. Or if every axiom is a tau¬ 

tology and every rule of inference except one has the property of preserving 

tautologies, and if further there is a theorem of the logistic system that is not 

a tautology, it follows that the exceptional rule of inference is independent. 

In the case of Pt, it happens that we may establish the independence of 

each of the axioms and rules of inference, with the exception of the rule of 

substitution, by means of a system of three truth-values, 0, 1, 2, of which 

0 is the only designated truth-value, and 2 is assigned to the primitive 

constant / as a value. The required truth-tables of zd are as follows (the 

number at the head of each column indicating the axiom or rule whose 

independence is established by the table in that column). 

*100 f 102 1103 1104 

p 9 pZDq P => ? P => ? P? 
0 o 0 0 0 0 
0 1 0 2 1 1 
0 2 2 2 »> 2 
I 0 0 2 0 0 
1 1 0 2 0 0 
1 2 2 0 1 2 
2 0 0 0 0 0 
2 1 1 0 0 0 
2 2 0 0 0 0 

rather t„ tt, . .., tp for the designated truth-values and f, f. r f-r 
designated truth-values *' *.,'“'1 for the non' 

™ astst rmsnn" »•*«-»> 
inf inflIllte number of truth-values may also be used with either a finifn 

SESSSaSSSSSS 



114 THE PROPOSITIONAL CALCULUS [Chap. I 

For the proof of independence of *100, it is necessary to supply also an 

example of a theorem of PA which is not a tautology according to the truth- 

table used. One such example is / zd p\ another is p zd [q => /] 3 / 3 q. 

The rule of substitution *101 is necessarily tautology-preserving for any 

system of truth-values and truth-tables, and hence its independence cannot 

be established by this method. However, the independence of *101 follows 

from the fact that without it no wff longer than the longest of the axioms 

could be proved. And in fact a like proof of the independence of the rule of 

substitution will continue to hold after the adjunction of any finite number 

of additional axioms (since examples are easily found of wffs of arbitrarily 

great length which are theorems of P,). 

The foregoing method of finding independence examples by means of a 

generalized system of truth-values suggests also a generalization of the prop¬ 

ositional calculus itself. Namely, we may fix upon a generalized system of 

truth-values as above, then introduce a number of connectives with assigned 

truth-tables, and possibly also a number of constants to each of which a 

particular truth-value is assigned as value. The wffs of a logistic system may 

be constructed by using variables and these connectives and constants, and 

we may supply a list of axioms which are tautologies (in the generalized 

system of truth-values) and rules of inference which preserve tautologies. 

Especially if this is done in such a way that every tautology is a theorem, 

the resulting logistic system is called a many-valued, propositional calculus 

in the sense of Lukasiewicz. 

The same considerations lead also to a generalization of the requirements 

imposed in §07 on an interpretation of a logistic system, these requirements 

being modified as follows when a generalized system of truth-values is used. 

The semantical rules must be such that the axioms either denote truth-values 

or have always truth-values as values and the rules of inference preserve this 

property. Only those wffs are capable of being asserted which denote truth- 

values or have always truth-values as values; and only those are capable of being 

rightly asserted which denote a designated truth-value or have only designated 

truth-values as values. An interpretation of a logistic system is called sound if, 

under it, all the axioms either denote designated truth-values or have only 

designated truth-values as values, and the rules of inference preserve this prop¬ 

erty (in the sense that, if all the premisses of an immediate inference either 

denote designated truth-values or have only designated truth-values as values, 

then the same holds of the conclusion). 
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EXERCISES 19 

19.O. Carry out in full detail the proof of independence of the axioms and 

rules of Pi which is outlined in the text. (In showing that particular wffs are 

or are not tautologies in the generalized system of truth-values, use an ar¬ 

rangement analogous to that described in §15.) 

19.1. Consider the possibility of demonstrating the independence of the 

axioms and rules of Px by means of a system of only two truth-values. I.e., 

for each axiom and rule, either supply the required demonstration or show 

it to be impossible. 

19.2. Similarly consider the possibility of demonstrating the independence 

of the axioms and rules of Pi by means of a system of three truth-values of 

which two are designated. 

19.3. The truth-table given in the text for the independence of *100 

shows that there are theorems containing the symbol / which cannot be 

proved without use of *100, but is insufficient to show that there are any 

such theorems not containing /. Prove this statement. Devise another truth- 

table for the independence of *100, not having this defect. 

19.4. Consider a logistic system whose wffs are the same as those of Pj, 

whose rules of inference are modus ponens and substitution, which has a 

finite number of axioms, and for which the metatheorem *152 holds. Prove 

that the rules of modus ponens and substitution are necessarily both inde¬ 

pendent. (In the case of modus ponens, this can be done by exhibiting an 

infinite list of tautologies (in the sense of §15) no two of which are variants 

of each other, and proving that no one of them is obtainable by substitution 

from any tautology other than a variant of itself.) 

I9*5* Prove the independence of the axioms and rules of Pw (see exercise 

12.7). Except in the case of the rule of substitution, use the method of truth- 
tables. 

19.6. Let P+ be the system obtained from Pt by deleting / from among the 

primitive symbols, and making only such further changes as this deletion 

compels, namely, omitting the formation rule lOi and the axiom |104. 

Prove that the system P+ is not complete. Determine which of the axioms of 

PB (exercise 18.3) are theorems of P+ and which not. 

19.7. Discuss the independence of the rule of modus ponens in the system 

P+. Does this independence follow trivially from any result already estab¬ 

lished (in text or exercises)? If not, how can it be shown? 

19.8. Using modus ponens and substitution as rules of inference, find 

axioms for the following many-valued propositional calculus (due to 



116 THE PROPOSITIONAL CALCULUS [Chap. I 

Lukasiewicz — cf. footnote 276). There are three truth-values, 0,1, 2, of 

which 0 is designated. There are two primitive constants /2 and /2, to which 

1 and 2 are assigned as values respectively. And there is one primitive con¬ 

nective, =5, which is binary and to which the following truth-table is assigned: 

p p => q 

0 0 0 

0 1 l 

0 2 2 

1 0 0 

1 1 0 

1 2 1 

2 0 0 

2 1 0 

2 2 0 

Prove a modified deduction theorem for this system,that if Ax, A2,..., An I- B, 

then Ax, A2,..., An-1 b An . An za B; and hence prove analogues of 

**160 and *152. 

x9*9* Consider an interpretation of P, by means of four truth-values, 0, 1, 2. 
3, of which 0 is the only designated truth-value, and 3 is assigned to the constant 
/as value. For each of the following different truth-tables of o, discuss the sound¬ 
ness of the interpretation: 

P 
(1) 

/> =>? 

(2) 
p =>q 

0 0 0 
0 1 0 1 

0 2 2 

0 3 0 3 

1 0 0 0 

1 1 0 

1 2 ■rgB 2 

1 3 0 2 

2 0 0 0 

2 1 1 

2 2 0 

2 3 0 1 

3 0 0 0 

3 1 0 

3 2 0 

3 3 0 0 

(3) (4) (5) (6) 

P =>q P=>q P=>q />=>? 

0 0 0 0 

2 3 0 0 

3 0 0 0 

1 1 0 0 

0 0 0 

llfilaffl 0 0 2 

0 0 0 0 

0 0 0 

0 0 0 0 

Ulpi 1 2 2 

0 0 0 0 

HiM| 3 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 
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19.10. It may happen that a sound interpretation of P, by means of a system 

of truth-values and truth-tables is reducible to the principal interpretation (§10) 

by replacing the designated truth-values everywhere by t and the non-designated 

truth-values everywhere by f. Following Carnap, let us call such a sound inter¬ 

pretation of P! a normal interpretation, and other interpretations of P,, tton- 

normal interpretations.1** Then a normal interpretation of P, may be thought of 

as differing from the principal interpretation only in that, after division of 

propositions into true and false in ordinary fashion, some further subdivision is 

made of one or both categories. But a sound non-normal interpretation differs 

from the principal interpretation in some more drastic way. 

Of the sound interpretations of P, found in 19.9, determine which are normal 

interpretations and which are non-normal interpretations. Also determine which 

can be rendered normal without loss of soundness, by changing only the way in 

which the truth-values are divided into designated and non-designated truth- 

values. 

19.11. Consider an interpretation of P, by means of six truth-values. 0, 1,2, 

3, 4, 5, of which 0 and 1 are the designated truth-values, and 5 is assigned to 

the constant / as value, the truth-table of id being as follows: 

P I ? |l P => q 

0 0 0 
0 1 0 
0 2 0 
0 3 4 
0 4 4 
0 5 4 
1 0 0 
1 1 0 
1 2 2 

3 3 
1 4 4 
1 5 4 

P p =>q 

2 0 0 

2 1 1 
2 2 0 
2 3 4 

2 4 4 
2 5 3 
3 0 0 
3 1 1 
3 2 0 
3 3 0 
3 4 0 

3 5 2 

P ? p =>q 

4 0 0 

4 1 0 
4 2 0 
4 3 0 

4 4 0 
4 5 0 
5 0 0 
5 1 0 
5 2 0 
5 3 0 
5 4 0 
5 5 0 

(1) Show that the interpretation is sound. (Suggestion: Let A =3 B and A be 

tautologies (in the six truth-values). It follows immediately from the fourth, 
fifth, sixth, tenth, eleventh, and twelfth entries in the table that B cannot have 

the value 3, 4, or 5 for any system of values of its variables. Hence it follows that 

B cannot have the value 2 for a system of values of its variables, because if it did, 

worAw™^ ? ^terminology but an adaptation of it to the present context, the 

The doLS^ f ,be,“g by Carnap in a somewhat different sense from ours. 
fomKSSS? h T interpretations of the propositional calculus (in any one of its 
thA R M ?- * 'vh'ch<are not normal was pointed out, in effect, by B. A. Bernstein in 
inde^H ^’ll °Wnurtc?n Mathematical Society, vol. 38 (1932) pp. 390. 592- also 

pe dently by Carnap in his book. Formalization of Logic (1943) See fuiiJier a rp 

PpW49Uh98latter ^ thC PreSCnt WritCr in Tke PMo'opHcatZ 
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the value 3 would be obtained for B upon interchanging the values 2 and 3 in 

this system of values of its variables. Hence B is a tautology.) 

(2) Use this interpretation as a counterexample to show that the following 

statement is false: “In a sound interpretation of P, the truth-table of = is 

symmetric in the sense that, if p = q has a designated value for given values of 

p and q, it also has a designated value upon interchanging the values of p and q.” 

(3) Discuss the question in what way or ways it is possible to weaken this 

statement so as to obtain a true metatheorem of interest. 

19.12. Using an interpretation of P, by means of the three truth-values 0, 1, 

2, of which 0 and 1 are designated truth-values, and 2 is assigned to the constant 

/ as value, show that the following statement is false: “In a sound interpretation 

of P,, and for given values of p, q, and r, if p = q and q = r have designated 

truth-values, then p = r must have a designated truth-value.” (Suggestion: The 

most obvious method is to use for zd the truth-table of §15, with 0 and 2 in the 

roles of t and f respectively, and to give top zd q the value 1 whenever either 

p or q has the value 1. A different method is suggested by a remark of Church 

and Rescher in their review of a paper by Z. P. Dienes, in The Journal of Sym¬ 

bolic Logic, vol. 15 (1950), pp. 69-70.) 



II. The Propositional Calculus (Continued) 

20. The primitive basis of P8. Another formulation of the propositional 

calculus is the logistic system Pa, which differs from Pi primarily in the lack 

of (propositional) constants. 

The primitive symbols of P2 are the four improper symbols 

[ => ] - 

and the infinite list of (propositional) variables 

P ? r * Pi ?i ri h Pt • • • 

(the order here indicated being called the alphabetic order of the variables). 

The formation rules of Pa are: 

20i. A variable standing alone is a wff. 

20ii. If r is wf, then is wf. 

20iii. If T and A are wf, then (T z> A] is wf. 

A formula of Pt is wf if and only if its being so follows from the three 

formation rules. As in the case of P1( an effective test of well-formedness 

follows. In §22 we shall prove also that every wff of Pa, other than a variable 

standing alone, is of one and only one of the forms -A and [A o B] (where 

A and B are wf) and in each case is of that form in only one way. In a wff 

[A ^ B]» the wf parts A and B are the antecedent and consequent respectively 

and the occurrence of id between them is the principal implication sign. 

The rules of inference of Pa are the same as those of Pa: 

•200. From [A id B] and A to infer B. (Rule of modus ponens.) 

•201. From A to infer S*A|. (Ruie 0f substitution.) 

The axioms of Pa are the three following: 

t202. p=>mq=>p 

t203. sd[^d?]3iS3^i0? 

|204. ~p zd ~q 3 . q ZD p 

The axioms are in order the law of affirmation of the consequent, the self- 

distributive law of imply cation, and the converse law of contraposition. In 
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stating them we have used the same conventions about omission of brackets 

and use of heavy dots that were explained in §11, and we shall use these 

hereafter without remark in connection with any formulation of the prop¬ 

ositional calculus. For P2 we shall use also the definition schemata D3-11 

of §11, however understanding the which appears in them to be the 

primitive symbol ~ of P2. 

The principal interpretation of Pt is given by the following semantical rules: 
a. The variables are variables having the range t and f. 
b. A wff consisting of a variable a standing alone has the value t for the 

value t of a, and the value f for the value f of a. 
c. For a given assignment of values to the variables of A, the value of ~A 

is f if the value of A is t; and the value of ~A is t if the value of A is f. 
d. For a given assignment of values to the variables of A and B, the value 

of [A => B] is t if either the value of B is t or the value of A is f; and the value 
of [A z> B] is f if the value of B is f and at the same time the value of A is t. 

21. The deduction theorem for P2. As in the case of Plf we have 

at once the rule of simultaneous substitution as a derived rule: 

•210. If I- A and if b1( b2, ..., bnare distinct variables, then \- Sjj^;;;{£A|. 

We have also, as theorem of P2: 

f211. p 3 p [Reflexive law of implication.) 

Proof. By simultaneous substitution in f203: 

VpzD [q ZD p]z>. p=>q=>. pz>p 

Hence by f202 and modus ponens: 

V p zo qzo .pZD p 

Hence by substituting q p iorq, and using |202 and modus ponens again. 

Vp=>p 

Now the proof of the deduction theorem in §13 required only P ^ P> 

law of affirmation of the consequent, and the self-distributive law of im 

plication (together with the rules of modus ponens and simultaneous sub¬ 

stitution). Hence by the same proof we obtain the deduction theorem, and 

its corollary, as metatheorems of P2: 

•212. If Al# A,.An h B, then A„ A2.A-n-i H A„ 3 B. 

•213. If A I- B, then h A 3 B. 
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Also analogues of *133 and *134 are proved as before: 

*214. If every wff which occurs at least once in the list Ax, A2, . . A„ 

also occurs at least once in the list C1, C2, . . Cr, and if A,, A2, . . 

An I- B, then C„ C2.Cr I- B. 

•215. If 1- B then Cv Ct.C, b B. 

22. Some further theorems and metatheorems of P2. Hereafter 

we shall adopt a more condensed arrangement in exhibiting proofs of Pa, 

and later of other logistic systems. In particular we shall often omit explicit 

references to uses of substitution, modus ponens, or deduction theorem. 

|220. ~p z> .p id q (Law of denial of the antecedent.) 

Proof. By |202, ~p b ~q Z) ~p. 

Hence by f204, ~p \- p zd q. 

Then use the deduction theorem. 

f221. ~~p z> p (Law of double negation.) 

Proof. By |220, b z> ~~~p. 

Hence by f204, ~~p b —p p 

Use modus ponens, then the deduction theorem. 

|222. p z> ~~p (Converse law of double negation.) 

Proof. By t221, b-p z> ~p. Hence use |204. 

|223. p id q zd ~p (Law of contraposition.) 

Proof. By f221, p z> q, —p b q. 

Hence by f222, p z> q, —p b ~~q. 

Hence p z> q b zd ~~q. 

Use f204. Then use the deduction theorem. 

f224. ^D[rcJ:r]D^ 

Proof. By f221, p zd (r cfc r], ~~p b r r. 

Hence p 3 [r r] b ~~p 3 . r cj: r. 

Hence by 1204. p Z3 [r $ r] b r Z5 r => ~p. 

Hence by f211, p => [r cj: r] b ~/>. 

Then use the deduction theorem. 

For the effective test of well-formedness referred to in §20, and also for 

a number of other metatheorems which now follow, we make use of the 
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same process of counting brackets which is described in §10. Namely, we 

start at the beginning (or left) of a formula and proceed from left to right, 

counting each occurrence of [ as +1 and each occurrence of ] as -1, and 

adding as we go. The number which we assign, by this counting process, to 

an occurrence of a bracket will be called the number of that occurrence of a 

bracket in the formula. 

It follows from the definition of a wff that, if a wff contains brackets, it 

must end with an occurrence of ] as its final symbol; this we shall call the 

final bracket of the wff. By mathematical induction with respect to the total 

number of occurrences of 3 and the following lemma is readily established: 

The number of an occurrence of a bracket in a wff is positive, except in the case 

of the final bracket, which has the number 0, and the number of an occurrence 

of [in a wff is greater than 1, except in the case of the first occurrence of [. 

**225. Every wff, other than a variable standing alone, is of one and only 

one of the forms -A and TA 3 B], and in each case it is of that form 

in one and only one way. 

Proof. The first half of the theorem is obvious, by the definition of a wff. 

Again it is obvious that, if a wff has the form -A, it has that form in only 

one way (i.e., A is uniquely determined), for we may obtain A by just 

deleting - from the beginning of the wff. 

It remains to show that, if a wff has the form [A id B], it has that form in 

only one way. Suppose then that [A id B] and [C id D] are the same wff. 

If A contains no brackets; then—because it is evident, from the definition 

of a wff, that the first occurrence of id in a wff must be preceded by an occur¬ 

rence somewhere of [—it follows that the first occurrence of d in [A 3 B] 

is immediately after A, and hence—for the same reason—that C is iden¬ 

tical with A. By the same argument, if C contains no brackets, C and A 

are identical. If A and C both contain brackets, then the final bracket of A 

is the first occurrence of a bracket with the number 0 in A, and therefore is 

the second occurrence of a bracket with the number 1 in [A 3 B]; and the 

final bracket of C is the first occurrence of a bracket with the number 0 in G, 

therefore the second occurrence of a bracket with the number 1 in [C 3 D], 

this makes the final bracket of A and the final bracket of C coincide, and 

so makes A and C identical. Thus we have in every case that A and C are 

identical, and it then follows obviously that B and D are identical. 

**226. A wf part200 of ~A either coincides with -A or is a wf part of A. 

Proof. The case to be excluded is that of a wf part M of -A, obtained by 
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deleting one or more symbols at the end (or right) of -A and none at the 

beginning (or left). If M contains brackets, the impossibility of this follows 

because the number of the final bracket of M would be 0 in A although it 

is not the final bracket of A. If M contains no brackets, the impossibility 

follows quickly by mathematical induction with respect to the number 

of consecutive occurrences of - at the beginning of A. 

**227. A wf part of (A 3 B] either coincides with [A id B] or is a wf part 

of A or is a wf part of B.M1 

Proof. The case to be excluded is that of a wf part of [A id B] which, 

without coinciding with [A id B], includes the principal implication sign 

of [A 3 B] or the final bracket of [A 3 B] or the occurrence of [ at the 

beginning of [A3 B]. 

Suppose that M is such a wf part of (A3 B]. Then M contains brackets. 

Either the final bracket of M precedes the final bracket of [A3 B], and 

therefore has the number 0 in M but a positive number in [A 3 B]; or else 

the first occurrence of [ in M is later than the occurrence of [ at the beginning 

of [A 3 B], and therefore has the number 1 in M but a greater number in 

[A 3 B]. It follows in either case that every occurrence of a bracket in M 

has a number in M less than its number in [A 3 B]. Hence the final bracket 

of M must indeed precede the final bracket of [A3 B], and the first 

occurrence of [ in M must also be later than the occurrence of [ at the 

beginning of [A 3 B]. 

Since we now have, as the only remaining possibility, that M includes 

the principle implication sign of [A 3 B], it must include somewhere at 

least one bracket which precedes this principal implication sign and is 

therefore in A. Thus A contains brackets. The final bracket of A has the 

number 0 in A, therefore the number 1 in [A 3 B], therefore a number less 

than 1 in M; but this is impossible because it is not the final bracket of M. 

•*228. If A, M, N are wf and T results from A by substitution of N for 

M at zero or more places (not necessarily at all occurrences of M 
in A), then T is wf. 

Proof. For the two special cases, (a) that the substitution of N for M is 

at zero places in A, and (b) that M coincides with A and the substitution of 

N for M is at this one place in A, the result is immediate. For we have in 
case (a) that T is A, and in case (b) that T is N. 

i»zr a 2; ess Lfssr saag?mean a wi u~>>« -» 
As to the metatheorems **226-**227. compare 12.1 and footnote 170. 
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In order to prove **228 generally, we proceed by mathematical induction 

with respect to the total number of occurrences of the symbols id and ~ 

in A. If this total number is 0, we must have either case (a) or case (b), and 

the well-formedness of T is then immediate, as we have just seen. Consider 

then a wff A in which this total number is greater than 0; the only possible 

cases are the two following: 

Case 1: A is of the form ~At. Then by **226 (unless we have the special 

case (b) already considered) T is -Tj, where I\ results from A, by substi¬ 

tution of N for M at zero or more places. By hypothesis of induction, I\ is 

wf. Hence by 20ii it follows that T is wf. 

Case 2: A is of the form [A, id Aj]. Then by **227 (unless we have the special 

case (b) already considered) T is [I\ id r2], where and T2 result from 

Aj and A2 respectively by substitution of N for M at zero or more places. 

By hypothesis of induction, I\ and F2 are wf. Hence by 20iii it follows that 

r is wf. 

The proof by mathematical induction is then complete. 

*229. If B results from A by substitution of N for M at zero or more 

places (not necessarily at all occurrences of M in A), then 

Mz>N, NdMI-AdB 

and 

M => N, NdMI-BdA. 

Proof. For the two special cases, (a) that the substitution of N for M is 

at zero places in A, and (b) that M coincides with A, and the substitution of 

N for M is at this one place in A, the result is immediate; namely, in case 

(a) by substitution in f211, and in case (b) because A id B and B id A are 

the same as M 3 N and N id M respectively. 

In order to prove *229 generally, we proceed by mathematical induction 

with respect to the total number of occurrences of the symbols id and - 

in A. If this total number is 0, we must have one of the special cases (a) and 

(b) , and the result of *229 then follows immediately, as we have just seen. 

Consider then a wff A in which this total number is greater than 0; the only 

possible cases are the two following: 

Case 1: A is of the form ~Ar Then by **226 (unless we have the special 

case (b) already considered) B is of the form ~B1, where Bi results from Aj 

by substitution of N for M at zero or more places. By hypothesis of induction, 

M =) N, NaMhApB,, 

MdN, NdMHBjDAj. 
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Hence we get the result of *229 by substitution in |223 and modus ponens. 

Case 2: A is of the form A, 3 Aa. Then by **227 (unless we have the special 

case (b) already considered) B is of the form Bj 3 Ba, where Bj and Ba result 

from Ai and Aa respectively, by substitution of N for M at zero or more 

places. By hypothesis of induction, 

M 3 N, N 3 M F A, 3 Bj, 

M 3 N, N 3 M h Bj 3 Aj, 

M 3 N, N 3 M h Aa 3 Ba, 

M 3 N, N 3 M I- Ba 3 Aa. 

By modus potions, 

Bj 3 AIt Aa 3 Ba> A1 3 Aa, B, h Ba, 

Ax 3 Bj. Ba 3 Aa, Bj 3 Ba, A, h Aa. 

Hence we get the result of *229 by use of the deduction theorem. 

Thus the proof of *229 by mathematical induction is complete. 

23. Relationship of Pa to Px. Though the constant / is absent from 

the system Pa, we shall nevertheless be able to show the equivalence of the 

systems Pa and Pa in a sense which involves using in Pa the wff r c£ r (i.e., 

~[r3r]) to replace the constant / of Px. 

Under the principal interpretations of P, and Pa, the constant / of Px and the 

wff r tfc r of P» in fact do not have the same meaning. For the former is a constant 

denoting f, while the latter is a singulary form which has the value f for every 

value of its variable r. Nevertheless the two meanings sufficiently resemble 

each other that r c£ r can be used in Pa to serve many of the same purposes as 
might a constant denoting f. 

If A is any wff of Pa, then by a process of one-by-one replacement of the 

various wf parts ~C each in turn by C 3 (r cf: r] we may obtain from A a 

wff \ of Pa in which - does not occur otherwise than as a constituent in 

r + r- We may impose the restriction that, if ~C is the special wff r cf: r. 

the replacement of ~C by C 3 [r $ r] shall not be made. Then from a given 

wff A we obtain, by the process described, a unique wff A* which we shall 

call the expansion of A with respect to negation. If then in A* we replace r <± r 

everywhere by /, we obtain a unique wff A, of Pa which we shall call the 
representative of A in Px. 

We have the following metatheorems (proofs omitted when obvious): 

*230. If B results from A by replacement of ~C by C 

place in A, then AhB and B h A. 
[r <£ r] at one 
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Proof. This follows from *229 and modus potiens because, by substitution 

in f220 and f224, 

h~C3.C=>[r<t:r]f 
I- C z> [r cf: r] z> ~C. 

*231. If \ is the expansion of A with respect to negation, A f-A„ and 

A* HA. 

*232. If two wffs A and B of P2 have the same representative in Pj, then 

A h B and BhA. 

*233. If two wffs A and B of P2 have the same representative in Plt then 

[AdB and [BdA. 

*234. A wff A of P2 is a theorem of P2 if its representative A, in Px is a 

theorem of P,. 

Proof. Let Ac be the expansion of A with respect to negation. By *231, it 

is sufficient to prove that A<, is a theorem of P2 if A, is a theorem of P,. 

Since A^ is 

S![f =>r)A/|, 
we proceed as follows. 

We first observe that, if X is an axiom of Pj, then 

s:(,=,.xi 
is a theorem of P2. In fact, if X is 1102 or jT03, this is immediate by |202 and 

|203; and if X is fl04, this follows by t221 and *231. 

If a proof of Af in Px is given in which the variable r does not occur, we 

replace / everywhere in this proof by ~[r 3 r]. The resulting sequence of 

wffs of P2 becomes a proof of A0 in P2 upon supplying the proof of 

s'-„=„xi 
whenever necessary (this will be, as a matter of fact, whenever X is t^)* 

If the variable r does occur in the given proof of A, in Px, we begin by 

selecting a variable a which does not occur and replacing r by a throughout. 

After that we proceed as before, i.e., we replace / everywhere by ~[r 3 r], 

and then supply proof (in P2) of 

Si(r => nXl 

wherever necessary. Then finally we use *201 to substitute r for a. 

Employing the same truth-tables of z> and ~ as those given in §15, we 

may define the value of a wff of P2 for a system of values of its variables, m 

the same way that we did in the case of a wff of PIt is also possible, in t e 
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same way as before, to carry out the actual computation of the values of a 

wff for all systems of values of its variables. And a wff of P2 is called a 

tautology if its value is t for all systems of values of its variables, a contra¬ 

diction if its value is f for all systems of values of its variables. 

**235. Every theorem of P2 is a tautology. 

Proof. The three axioms of P2 are tautologies and the two rules of infer¬ 

ence have the property of preserving tautologies. (Cf. the proof of **150.) 

**236. If two wffs of P2 have the same representative in P,, then they have 

the same value for any system of values of the variables occurring 

in them. 

Proof. By *233, **235, and the truth-table of 

**237. A wff A of P2 is a tautology if and only if its representative A, in 

Pi is a tautology. 

Proof. Let A„ be the expansion of A with respect to negation. Because the 

wff -[r d r] of P2 has always the value f, it follows that A„ is a tautology 

if and only if At is a tautology. (For the full proof of this, the reader 

must supply an analogue of the lemma which was used in the proof 

of **150.) Therefore **237 follows by **236. 

**238. A wff A of Pt is a theorem of P2 only if its representative A, in 

Pj is a theorem of Px. 

Proof. If A is a theorem of P2, then by **235 it is a tautology. Therefore, 

by **237, A, is a tautology. Therefore, by *152. A, is a theorem of Pv 

The sense in which we have equivalence of the systems P2 and Pt now 

appears in *234 and **238. Namely, in the correspondence of each wff of 

P2 to its representative in P2 we have a many-one correspondence between 

the wffs of P2 and of P, such that theorems correspond to theorems and 

non-theorems to non-theorems. And this many-one correspondence satis¬ 

fies the structural conditions that, if A, and B, are the representatives of 

A and B respectively, then A, => B, is the representative of A z> B, and 

Ar z> / is the representative of -A “* (unless A is [r id r]) 

„^TdTpTc"hdt'ha«h°;even °‘a 
and non-theorems to non-theorpm* that theorems correspond to theorems 

the theorems anTthe non-^re^' jU,St °n the *round that 
of P, and in the case of Pt. But without some added° 601,1 ,n the case 
conditions here stated, the bare existence of suhTL?nd,t,ons' such ^ the structural 
said to constitute a significant equivalence nftH *h c°7esPondence could hardly be 
W X to the question, w^at Ts £%sha” return ,n Chap- 
two logistic systems. S ^ en* In Seneral, to the equivalence of 
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From this equivalence between the two systems, together with **237, 

we have also the converse of **235: 

*239. If a wff A of P, is a tautology, b A. 

In **235 and *239, together with the algorithm for determining whether 

a wff is a tautology, we have a solution of the decision problem of P2. In 

this connection the reader should satisfy himself that the proof of *239 

(together with the proofs of preceding metatheorems on which it depends) 

directly provides an effective procedure to construct a proof of A in P2 if 

it has been verified that A is a tautology. 

As in the case of P,, the consistency and completeness of P2, in the various 

senses discussed in Chapter I, now follow as corollaries of this solution of 

the decision problem. 

Principles of duality for P2, analogues of *161, *164, *165, also follow in 

the same way as for P2. 

EXERCISES 23 

23.O. Let P2L be the logistic system which is identical with P2 except 

that the wffs are translated into the parenthesis-free notation of Lukasie¬ 

wicz. State the primitive basis of P2L, and state and prove the analogues 

of **225-**227 for P2L. (Compare exercise 12.2, and footnote 91.) 

23.1. By the methods of §19, discuss the independence of the axioms and 

rules of P2. 

23.2. As a corollary of *229, prove the analogue of *159 (substitutivity 

of equivalence) for P2. 

23.3. Prove for P2 that every tautology’ is a theorem, by a method which 

parallels the proof of the corresponding metatheorem of P2 as this is con¬ 

tained in §§12-15, and which therefore avoids use of **226-*229. 

23.4. According to our conventions, the expression "~p 3 • ? P a^" 

breviates a certain wff of P, and a certain (different) wif of P2. Write each 

of these wffs without abbreviations other than omissions of brackets. For 

each wff, as thus written, carry out the computation of its values for all 

systems of values of its variables. Verify that corresponding values of the 

two wffs are always the same; and explain why this must be so in all such 

cases. _ . 
23.5. By analogy to §16, treat in detail the matter of duality in Ft. 

23.6. Let PF be the logistic system having the same primitive symbols and 

wffs as P2, *200 and *201 as its rules of inference, and the six following 

axioms: 
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pZD.qZDp 

pz>[qZDr}zD.qZD.pZDr 

pZD qz> ,~qZD ~p 

—P P 
p ZD —p 

(1) Prove f204 as a theorem of PF> and thus establish that the theorems of 

PF are the same as those of P2. (2) Discuss the independence of the axioms 

of PF. 

23.7* Let PL be the logistic system having the same primitive symbols 

and wffs as P2, *200 and *201 as its rules of inference, and the single follow¬ 

ing axiom: 

Pi =5 [?l =5 Pi\ Z> [~r Z> [p ZD ~s] [r ID [p ZD q] ZD . S ID P ZD . S => q] 

ZD P2\ ZD .ft ZD pt 

Establish that the theorems of PL are the same as those of Pa by showing 

(1) that the single axiom of PL is a tautology, and (2) that the axioms of 

P2 are theorems of PL. 

23.8. Establish the same result also for the logistic system P, which is 

like PL except that the following (somewhat shorter) single axiom is used: 

\j>ZD ,~qZD [r ZD s]ZD ,SZ> qZD .p^ZD .TZD q]ZD [~ft ZD [ft ZD r{] ZD Sj] ZD Sy 

23.9. Establish the same result also for the logistic system Ps, which 

is like Pt except that the single axiom is the following: 

rl ^ [p q ^ s ZD ft] ID [Sj ZD .S ZD Px ZD .~P ZD ~r] ZD .Sy ZD .S ZD p ZD mr ZD P 

(Make use of the result of exercise 18.4.) 

24. Primitive connectives for the propositional calculus. In Pt 

we used implication and negation as primitive connectives for the prop¬ 

ositional calculus, and in Pj we used implication and the constant /. We 

go on now to consider some other choices of primitive connectives (including, 

for convenience of expression, the constants as 0-ary connectives). 

With one exception, we shaU not consider connectives which take more 

than two operands. The exception is a ternary connective for which, when 

applied to operands A. B, C. we shall use the notation [A, B, C]. We call 

t hi C™n6Ctlve condition^ disjunction, and assign to it the following truth- 

*”A convenient oral reading of »[p, q. i3 «p or r according as * or not q. 
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P 9 | r [p.q.r] 

t t t t 

t t f t 

t f t t 

t f f f 

f t t f 

f t f f 

f f t t 

f f f f 

(It follows that the dual of \j>, q, r] is [r, q, p] in the sense that the truth- 

table of [p, q, r] becomes the truth-table of [r, q, p] upon interchanging t 

and f.) 

The singulary and binary connectives which we shall consider are those 

of §05,804 with truth-tables as in §15. The constants are / and /, with values 

assigned as t and f respectively. If we include the truth-table 

P 11 P 

t t 

f f 

it will be seen that all possible truth-tables are then covered (for connectives 

that are no more than binary), except those truth-tables in which the value 

in the last column is independent of one of the earlier columns. 

When a number of primitive connectives are given, together with the 

usual infinite list of propositional variables, the definition of wff is then 

immediate by analogy with §§10, 20. And the value of a wff for each system 

of values of its variables is then given by a definition analogous to that of 

§15. It is clear that the values of a particular wff for all systems of values of 

its variables may be given completely in a finite table like the truth-table 

of a connective; we shall call this the truth-table of the wff. 

A system of primitive connectives for propositional calculus will be called 

complete if all possible truth-tables of two or more columns*05 are found among 

the truth-tables of the resulting wffs. And a particular one of the connectives 

,MI.e„ the sentence connectives of §05. wjth 
‘“Notice that a wff with one variable has a truth-table of two columns, a wl 

two variables a truth-table of three columns, and so on. A wff wi “° . jumn 
just one (fixed) value and may therefore be said to have a truth-table ofjustone cohuu 
and one row)' In the definition of completeness we have puposely excludedlone* 

umn truth-tables because we wish to allow as complete not only such a system of 

connectives as implication and / but also, e.g., such a system as imp 1 

tion. 
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will be called independent if, upon suppression of that particular connective, 

its truth-table is no longer among the truth-tables of the resulting wffs—or 

in the case of a constant, t, or /, if upon suppression of it there is no longer 

among the resulting wffs any one which has the value t, or the value f, 

respectively, for all systems of values of its variables. 

The problem of complete systems of independent primitive connectives 

for the propositional calculus has been treated systematically by Post.** 

We shall not make an exhaustive treatment here, but shall consider only 

certain special cases. We begin with the following: 

Conditioned disjunction, t, and f constitute a complete system of indepetident 

primitive connectives for the propositional calculus. 

The completeness is proved by mathematical induction with respect to 

the number of different variables in a wff constructed from these connectives. 

Among the wffs containing no variables, it is clear that all possible systems 

of values are found, since the wff / has the value f, and the wff t has the value 

t. Suppose that among the wffs containing n variables all possible systems of 

values, i.e., all possible truth-tables, are found. And consider a proposed 

system of values for a wff containing n + 1 variables, i.e., a proposed 

(n -f- 2)-column truth-table, T. Let the first column in the truth-table T 

be for the variable b. Let the truth-table Tt be obtained from T by deleting 

all the rows which have f in the first column and then deleting the first 

column. Let Ta be obtained from T by deleting all the rows which have t in 

the first column and then deleting the first column. By hypothesis of 

induction, wffs A and C exist whose truth-tables are Tt and Tj. respectively. 

Then the wff [A, b, C] has the truth-table T, as may be seen by reference 

to the truth-table of conditioned disjunction. (Thus the completeness of 

the given system of primitive connectives follows by mathematical 
induction.) 

The independence of conditioned disjunction is obvious, since without 

conditioned disjunction there would be no wffs except those consisting of a 

single symbol (/ or / or a variable). 

The independence of / may be proved by reference to the last row in the 

truth-table of conditioned disjunction, since it follows from this last row 

that, if a wff is constructed from conditioned disjunction and / (without 

FfT The Tw°-Value* I ter alive Systems of Mathematical Logic (1941). 

Wiliam C?Kax n° m°re thaD binary' there is a <b«erent treatment by 
(1942) U7-132. TranSaC‘,ons 0/ ,he A™''can Mathematical Society, vol. 51 

an^rhif^3 also.wlth *he Pr°blem of characterizing the truth-tables which result from 
an arbitrary system of primitive connectives (with assigned truth-tables). 
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use of /), then it must have the value f when the value f is given to all its 

variables. In the same way the independence of / may be proved by reference 

to the first row in the truth-table of conditioned disjunction. 

We may now prove completeness of other systems of primitive connectives 

by defining by means of the given primitive connectives (in the manner of 

§11) the three connectives, conditional disjunction, /, and /, and showing 

that the definitions give the value t to t, the value f to /, and the required 

truth-table to conditioned disjunction. Thus the completeness of implication 

and / follows by D1 (see §11) and the definition: 

D12. [A, B, C] -»■ [B 3 A][~B 3 C] 

In the case of systems of primitive connectives which do not include 

constants, it is not possible to give definitions of / and /. But in proving 

completeness it is sufficient instead to give an example of a wff which has 

the value t for all systems of values of its variables, i.e., which is a tautology, 

and an example of a wff which has the value f for all systems of values of its 

variables, i.e., which is a contradiction. Thus the completeness of impli¬ 

cation and negation follows by D12 above (as reconstrued when implication 

and negation are the primitive connectives) together with any example of 

a tautology, say r 3 r, and any example of a contradiction, say r cf: r. 

In each of the systems, implication and /, implication and negation, the 

independence of the second connective follows because no wff constructed 

from implication alone can be a contradiction (as we may prove by mathe¬ 

matical induction, using the truth-table of implication). The independence 

of implication is in each case obvious because of the very restricted class of 

wffs which could be constructed without implication. Thus: 

Each of the systems, implication and f, implication and negation, is a com¬ 

plete system of independent primitive connectives for the propositional calculus. 

Having this, we may now also prove completeness of a system of primitive 

connectives by defining either implication and / or implication and negation, 

and showing that the definitions give the required truth-tables (and, if / 

is defined, that they give the value f to /). 

In particular the completeness of negation and disjunction follows by 

the definition of (A 3 B] as -A v B. And the completeness of negation 

and conjunction follows by the definition of [A 3 B] as~[A ~B]. In 

ence may be proved in each case in a manner analogous to that in whic 

independence of implication and negation was proved. Thus: 

Each of the systems negation and disjunction, negation and conjunction, is 
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a compile system of independent primitive connectives for the propositional 

calculus. 

We leave to the reader the proof of the following: 

Implication and converse non-implication constitute a complete system of 

independent primitive connectives for the propositional calculus. 

This last system of primitive connectives has. like the system consisting 

of conditioned disjunction, t. and f, the substantial advantage of being self- 

dual in the sense that the dual of each primitive connective either is itself 

a primitive connective or is obtained from a primitive connective by 

permuting the operands. Indeed it is dear that a treatment of duality, 

like that of §16 for P,. would be much simpler in the case of a formulation 

of the propositional calculus based on a self-dual system of primitive 

connectives. 

Of the two self-dual systems of primitive connectives suggested, that con¬ 

sisting of implication and converse non-implication has the disadvantage 

that it is impossible to make a definition of negation which is self-dual in 

the sense that the dual of -A is -Ax, where Ax is the dual of A. Therefore it 

becomes necessary (for convenience in dualizing) to make two definitions of 

negation which are duals of each other. Then, if the symbols - and — are 

used for the two negations, the dual of -A will be ~AX, where A, is the dual 

of A. 

The self-dual system consisting of conditioned disjunction, t, and /. does 

not have this disadvantage. But it does have the obvious disadvantages 

associated with the use, as primitive, of a connective which takes more than 

two operands. 

For this reason it has sometimes been suggested that the requirement of 

independence be abandoned in the interest of admitting a more convenient 

self-dual system of primitive connectives. In particular the system consisting 

of negation, conjunction, and disjunction has been proposed. Another possi¬ 

bility, of course, is negation, implication, and converse non-implication. 

For certain purposes there are advantages in a complete system of primi¬ 

tive connectives which consists of one connective only, although to obtain 

such a system it is necessary to make a rather artificial choice of the primi¬ 

tive connective (and also to abandon any requirement of self-duality if 

the primitive connective is to be no more than binary). We leave to the 
reader the proof of the following:5107 

W?'Sf!le pnmire c°nfective for 1110 propositional calculus was 
Peirce, as appears from a fragment, written about 1880. and from 
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Non-conjunction, taken alone, constitutes a complete system of primitive 

connectives for the propositional calculus. Likewise non-disjunction alone. These 

are the only connectives which are no more than binary and which have the 

property of constituting a complete system of primitive connectives for the 

propositional calculus when taken alone. 

EXERCISES 24 

24.O. Taking conditioned disjunction, t, and / as primitive, give defini¬ 

tions of all the singulary and binary connectives. Select the simplest pos¬ 

sible definitions, subject to the conditions that definitions of mutually dual 

connectives shall be dual to each other and that the definition of negation 

shall be self-dual. 

24.1. Taking implication and converse non-implication as primitive, give 

definitions of the singulary and remaining binary connectives. Select the 

simplest possible definitions, subject to the condition that definitions of 

mutually dual connectives shall be dual to each other. As indicated in the 

text, supply definitions of two negations dual to each other. 

24.2. With conditioned disjunction, t, and / as primitive, assume that a 

formulation of the propositional calculus has been given such that every 

theorem is a tautology and every tautology is a theorem. Supply for this 

formulation of the propositional calculus a treatment of duality, analogous 

to that of §16 for P1# Discuss first the dualization of wffs proper, and then 

Chapter 3 of his unfinished Minute Logic, dated January-February 1902. These were 
unpublished during Peirce's lifetime, but appeared in 1933 in the fourth volume of his 
Collected Papers (see pp. 13-18, 215-216 thereof). First publication of the remark that 
the propositional calculus may be based on a single primitive connective was by 
H. M. Sheffer in a paper in the Transactions of the American Mathematical Society, vo . 

14 (1913), pp. 481-488. 
The analogous remark for Boolean algebra is that the usual Boolean operations may 

be based on a single primitive operation, for which two choices, dual to each other, are 
possible. Both of these operations are used together by Edward Stamm as a self-dual 
system of primitive operations for a postulational treatment of Boolean l° * 
paper in Monatshe/te fur Malhematik und Physik, vol. 22 (1911), pp. 137-14 . ® 
plicit basing of Boolean algebra on a single primitive connective first appears in tmeiie 
paper of 1913 (there is also some suggestion of this in Peirce's unpublished fragmen 

1880) 
Peirce's notations, which are his two alternative single primitive connectives tor 

the propositional calculus, have not been used by others and need no e r P 
here. Sheffer uses the sign of disjunction, v, inverted as a sign of jhe 
introduces non-conjunction only in a footnote and uses no specia sign' ' -th 
vertical line, since called Sheffer's stroke, was used by Sheffer only in connectio 
Boolean algebra; its use as a sign of non-conjunction was introduced by J.• • • 
in the paper which has his single axiom for the propositional calculus discussed m^e 
next section (cf. Proceedings of the Cambridge Philosophical Society, vol. 19 ( 

pp. 32-41). 
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also the dualization of expressions that are abbreviations of wffs under the 

definitions of 24.0. 

24.3. Show that equivalence, disjunction, and / constitute a complete 

system of independent primitive connectives for the propositional calculus. 

(Compare exercise 15.7, and footnote 186.) 

24.4. In each of the following systems of primitive connectives for the 

propositional calculus, demonstrate the independence of the connectives: 

(1) negation and disjunction; (2) negation and conjunction; (3) implication 

and converse non-implication. 

24.5. Taking non-conjunction as the only primitive connective, give 

definitions of the singulary and remaining binary connectives. Neglecting 

considerations of duality, select the definitions in which the definiens is 

shortest (when written out in full, in terms of the primitive connective). 

24.6. Show that equivalence and non-equivalence do not constitute a 

complete system of primitive connectives for the propositional calculus. 

Determine all possible ways of adding to the list one or more connectives 

which are no more than binary, so as to obtain a complete system of inde¬ 

pendent primitive connectives for the propositional calculus. 

24.7. It may happen that a complete system of primitive connectives for 

the propositional calculus, though all are independent, is capable of being 

reduced without loss of completeness by replacing one of the connectives by 

a connective which can be defined from it alone and takes fewer operands than 

it does. For this purpose, any tautology is to be treated as if it supplied a 

definition of t, and any contradiction a definition of /, though these are not 

definitions in the proper sense (cf. the remark in the text on this point). 

When a complete system of independent primitive connectives for the prop¬ 

ositional calculus is not capable of being reduced in this way, it is a spe¬ 

cialized system of primitive connectives for the propositional calculus, in the 

sense of Post. Of the various complete systems of independent primitive 

connectives for the propositional calculus which are mentioned in the text, 

determine which are specialized systems. Of those which are not. supply all 

possible reductions to specialized systems. 

24-8- Do the same thing for each of the complete systems of independent 
primitive connectives found in 24.6. 

34.9. Consider a formulation of the propositional calculus in which the 

primitive connectives are negation, conjunction, and disjunction. A wff B 

UtheTn " d,fferen* variables is “id be in full disjunctive normal 

junction^ r0WmS C0^,t,0nS are Sa‘iSfied: (i) B has the f°™ °f » dis¬ 
junction C1vC!v...,C,; (ii) each term C, of this disjunction has the 
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form of a conjunction, CnC,2... Cin; (iii) each C<fc (i = 1, 2,.... m and 

k = 1,2,.. n) is either bfc or ~bt, where bfc is the &th of the variables 

occurring in B, according to the alphabetic order of the variables (§20); 

(iv) the terms C, are all different and are arranged among themselves accord¬ 

ing to the rule that, if Cn, C,2, ..., C<(t_u are the same as CA, Cfi, 

• • •. Cy(t_j, respectively, and Cit is bfc, and C,t is ~bt, then i < j. Introduce 

material equivalence by an appropriate definition, and let a wff B be called 

a full disjunctive normal form of a wff A if B is in full disjunctive normal form 

and contains the same variables as A does and A = B is a tautology. Show 

that every wff not a contradiction has a unique full disjunctive normal 

form; and by means of the two laws of De Morgan (cf. 15.8) and commuta¬ 

tive, associative, and distributive laws involving conjunction and dis¬ 

junction (cf. 15.5, 15.7, 15.8), show how to reduce the wff to full disjunctive 

normal form. Show that a wff is a tautology if and only if it has a full 

disjunctive normal form in which m = 2". 

24.IO. For a formulation of the propositional calculus in which the primi¬ 

tive connectives are conditioned disjunction, t, and /, we may define normal 

form as follows, by recursion with respect to the number of different variables 

which a wff contains: a wff containing no variables is in normal form if and 

only if it is one of the two wffs, t, f \ a wff in which the distinct variables 

contained are, in alphabetic order, b1( b2,..bn is in normal form if and 

only if it has the form [A, b„, C], where each of the wffs A and C contains 

all of the variables blt b2.bn_x, does not contain bn. and is in normal 

form. For this case establish a result about reduction to normal form, 

analogous to that of exercise 24.9 for reduction to full disjunctive normal 

form in the case of negation, conjunction, and disjunction as primitive 

connectives. 

25. Other formulations of the propositional calculus. Formulations 

of the propositional calculus so far considered, in the text and in exercises, 

have been based either on implication and / or on implication and negation 

as primitive connectives. We go on now to describe briefly some formulations 

based on other primitive connectives. 
Very well known is the formulation. PR. of the propositional calculus 

which is used in Principia Mathematica. In this the primitive connectiv^ 

are negation and disjunction. The rules of inference are su 1 

moius ponens (the latter in the form, from ~A v B and A to ^ 

axioms are the five following, in which A r? B is to be unde 

abbreviation of —A v B; 
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pvp=>P 
<7 =>^v? 

pvq=>qvp 

pv[qvr]=>qv[pvr] 
qz>r=)mpvq-=>pvr 

Several reductions of this sytem have been proposed. Of these the most 

immediate is the system PB obtained by just deleting the fourth axiom, 

which is, in fact, non-independent. Another is the system PN in which the 

five axioms are replaced by the following four axioms: 

/>v/>=>/> 

pz>pvq 
^v[?vr]D?v[^vr] 

qiDr-z>mpvqiDpvr 

Still another is the system PG in which the five axioms are replaced by the 

following three: 

pvp=>p 
p=>pvq 

q^r=>.pvq=>rvp 

For some purposes there may be advantages in a formulation of the prop¬ 

ositional calculus which is based on only one primitive connective, only 

one axiom, and besides substitution only one rule of inference, although in 

order to accomplish this it is necessary to make a rather artificial selection 

of the primitive connective and to allow the single axiom to be relatively 

long. As long as the procedure in constructing a logistic system is regarded 

as tentative, with the choice held open as to what assumptions (in the form 

of axioms or rules) will finally be accepted—or if the emphasis is upon fixing 

the ground of theorems and metatheorems in the sense of distinguishing 

what assumptions each one rests upon —the preference will be for natural¬ 

ness m the selection of primitive connectives and for simplicity in the individ¬ 

ual axioms and rules, rather than for reduction in their number. On the 

other hand the proof of desired metatheorems may well be simplified in 

some cases by the contrary course of reducing the number of primitive 

connectives, axioms, and rules, even at the expense of naturalness or sim¬ 

plicity; and a metatheorem, once proved-for one formulation, may perhaps 

be extended to other formulations by establishing equivalence of the for¬ 
mulations (in some appropriate sense). 

For the propositional calculus, a formulation of the proposed kind was 

first found by J. G. P. Nicod. His system, call it Pn, is based on non-conjunc- 
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tion as the primitive connective. The rules of inference are substitution and 

the rule: from A | . B | C and A to infer C. The single axiom is: 

P\[q\r]\-Pi\[Pi\Pi]\*s\q\.p\s\.p\s 

In another such formulation of the propositional calculus, Pw, the prim¬ 

itive connective and the rules of inference are the same as in Pn, and the 

single axiom is the following: 

P I [q M I. [s I r I. p I s I. p I s] I. P I. P I q 

(This axiom, unlike Nicod’s, is organic, in the sense of Wajsberg and Le- 

Sniewski, i.e., no wf part shorter than the whole is a tautology.) 

In still another such formulation of the propositional calculus, PL, the 

primitive connective and the rules of inference are still the same as in Pn. 

and the single axiom is: 

P I [? I r] I • P I [r I P] I • s I q I • P I s I • P I $ 
(This axiom is closer to Nicod’s, and still organic.) 

EXERCISES 25 

25.0. Establish the sufficiency of PR for the propositional calculus by 

carrying the development of the system far enough, either to prove directly 

that a wff is a theorem if and only if it is a tautology, or to show equivalence 

to P2 in a sense analogous to that of §23. (To facilitate the development, the 

derived rule should be established as early as possible, that if M, N, A, B 

satisfy the conditions stated in *229, and if h M id N and V N id M, then 

I-A id B and h B d A.) 

25.1. Establish the sufficiency of PB for the propositional calculus by 

proving the fourth axiom of PR as a theorem. 

25.2. Discuss the independence of the axioms and rules of PB- 

25.3. Establish the sufficiency of PN for the propositional calculus by 

proving the second and third axioms of PR as theorems. 

25.4. Discuss the independence of the axioms and rules of PN- 

25.5. Establish the sufficiency of PG for the propositional calculus by 

proving the axioms of PR as theorems. (The chief difficulty is to prove the 

theorem p 3 p. For this purpose, following H. Rasiowa, we may first prove 

in order the theorems /> 3 ~~p, 13 ~P’ V * 

p y-p, —[/> 3 r] 3 . s v [q v p] 3 r v q v s.) 
25.6. Discuss the independence of the axioms and rules of PG- 

25.7. Establish the sufficiency of Pn for the propositional calculus y 

showing its equivalence to PR in a sense analogous to that of §23. 



§25] EXERCISES 25 139 

25.8. Establish the sufficiency of Pn for the propositional calculus, with¬ 

out use of PR, by showing its equivalence to P2 in a sense analogous to that 

of §23. 

25.9. Discuss the independence of the axioms and rules of Pn. (This 

question can be answered by means of immediately obvious considerations, 

without use of truth-tables or generalized systems of truth-values in the 

sense of §19.) 

25.10. By the method of §19 or otherwise, determine whether Pn remains 

sufficient for the propositional calculus when its second rule of inference is 

weakened to the following: from A |. B | B and A to infer B. 

25.11. Establish the sufficiency of Pw for the propositional calculus by 

proving the axiom of Pn as a theorem. 

25.12. Establish the sufficiency of PL for the propositional calculus. 

25.13. *08 (1) Given implication and converse non-implication as primitive 

connectives, and substitution and modus ponens as rules of inference, find 

axioms so that the resulting system is sufficient for the propositional cal¬ 

culus. Seek, as far as feasible, to make the individual axioms simple, and 

after that to make their number small. (2) Establish the independence of 

the axioms and rules. 

25*I4*“8 Given negation, conjunction, and disjunction as primitive con¬ 

nectives, find axioms and rules of inference so that the resulting logistic 

system is sufficient for the propositional calculus. In doing so, make the 

system of axioms and rules of inference self-dual in such a sense that a meta¬ 

theorem analogous to *161 (principle of duality) follows immediately there¬ 

from. Subject to this condition seek, as far as feasible, to make the individual 

axioms and rules simple, and after that to make their number small. Can 

the axioms and rules be made independent without excessive complication 

or loss of the feature of self-duality? 

^S-"8 Answer the same questions if the primitive connectives are con¬ 
ditioned disjunction, /, and /. 

25.16.*08 Let the primitive connectives be conditioned disjunction, *, 

and /. Let the rules of inference be the rule of substitution and the following 

rule: from [A, B, C] and B to infer A. Find axioms so that the resulting 

system is sufficient for the propositional calculus. Seek, as far as feasible, 

to make the individual axioms simple, and after that to make their number 
small. (Ignore the matter of duality.) 

exercise in 
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26. Partial systems of propositional calculus. We have so far 

emphasized the matter of logistic systems adequate to the full propositional 

calculus, in the sense of being equivalent in some appropriate sense to Px or 

P2. Studies have also been made, however, of various partial systems, not 

adequate to the full propositional calculus, and in this section we shall 
describe briefly some of these. 

One sort of partial system of propositional calculus is based on an in¬ 

complete system of primitive connectives, axioms and rules being so chosen 

that the theorems coincide with the tautologies in those connectives. An 

example is the implicational propositional calculus, which has implication as 

its only primitive connective, and which is formulated by (e.g.) either the 

logistic system P^ of exercise 18.3 or the system P[ of 18.4. Other examples 

will be found in the exercises following this section. 

The chief interest of partial systems of this sort would seem to be as step¬ 

ping-stones toward formulations of the full propositional calculus. For 

example, the result of exercise 18.4, together with that of 12.7, leads to a 

formulation P,, of the propositional calculus in which the primitive connec¬ 

tives are implication and /, the rules of inference are modus ponens and sub¬ 

stitution, and the axioms are the two following: 

p-=>q .rup 

t=>P 
,s=>p 

The foregoing formulation of the full propositional calculus is elegant for 

its brevity, and sharply separates out the role of the constant / from that of 

implication, but fails to separate from one another what may be regarded 

as different assumptions about implication. If we wished to separate from 

the others those properties of implication which are involved in the deduc¬ 

tion theorem, we might begin with the logistic system P+ of exercise 19.6 

(or an equivalent)—the positive implicational propositional calculus of 

Hilbert—and add primitive connectives and axioms to obtain a formulation 

of the full propositional calculus. 
Akin to the positive implicational propositional calculus is the positive 

propositional calculus of Hilbert, designed to embody the part of the prop¬ 

ositional calculus which may be said to be independent in some sense o 

the existence of a negation. This may be formulated as a logistic system P . 
as follows. The primitive connectives are implication, conjunction, disjunc- 

tion, and equivalence (which then are not independent, even as pnmi 
connectives for this partial system of propositional calculus). The rules o 

inference are modus ponens and substitution. And the axioms are 
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eleven following: 

/>=>■?=> P 
sz> [/>=>?] =>.s=>/>z>.s=>? 

pq=>p 
pq=>q 

P=> -9 => Pi 
P=>pwq 
qz=>pwq 

^DrD.?DrZ) . p V q ZD r 

p = q=> ./>=>? 

p = q-=> .q=>P 

p=>q=> mqzip=> ,p = q 

The system Pp may be extended to a formulation of the full propositional 

calculus by adding negation as a primitive connective and one or more 

suitably chosen axioms involving negation. We may for example use |204 as 

a single additional axiom, so obtaining a formulation of the propositional 

calculus which we shall call PH. 

On the other hand by adding to Pp a weaker axiom or axioms involving 

negation we may obtain a formulation of the intuitionistic propositional 

calculus of Heyting.209 

The mathematical intuitionism of L. E. J. Brouwer will be discussed in 

Chapter XII. On grounds to be explained in that chapter, it rejects certain 

principles of logic which mathematicians have traditionally accepted without 

question, among them certain laws of propositional calculus, especially the 

law of double negation and the law of excluded middle. (Of course this in¬ 

volves also rejection of such an interpretation of propositional calculus as 

that of §10 or §20, not perhaps in itself but in the light of the actual use of 

the propositional calculus as a part of a more extensive language.) 

Heyting's logistic formalization of the ideas of Brouwer (accepted by 

Brouwer) gave them a precision which they otherwise lacked, and has played 

a major role in subsequent debate of the merits of the intuitionistic critique 

of classical mathematics. For the intuitionistic propositional calculus we 

adopt not Heyting’s original formulation but the following equivalent 
formulation P‘s. 

The primitive connectives of P‘ are implication, conjunction, disjunction, 

equivalence, and negation. The rules of inference are modus ponens and 

^eyt'ng in Silzvngsberichte der Preussischen Ahadetnie der 
rhysikalisch-mathematische Klasse. 1930. pp. 42-56. 

Wissenschaften, 
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substitution. The axioms are the eleven axioms of Pp and the two following 

additional axioms: 

P z> ~p z> ~p {Special law of reduclio ad absurdum.) 

~P n *p ~z> q {Law of denial of the antecedent.) 

The minimal propositional calculus of Kolmogoroff and Johansson*10 

makes a more drastic rejection of classical laws involving negation. A for¬ 

mulation of it, P“, may be obtained from P$ by replacing the two foregoing 

axioms by the single axiom: 

pnqiD.P'Z>~qzo~p {Law of reductio ad absurdum.) 

Wajsberg has shown211 that any theorem A of Pg can be proved from the 

first two of the thirteen axioms together with only those axioms which 

contain the connectives, other than implication, actually appearing in A. 

As a corollary the same thing may be shown also for P“. It follows that those 

theorems of the intuitionistic propositional calculus Pg, or of the minimal 

propositional calculus P“, which do not contain negation are identical with 

the theorems of the positive propositional calculus; further, that those 

theorems of any one of the three systems in which implication appears as 

the only connective are identical with the theorems of the positive implica- 

tional propositional calculus. 

The decision problem of Pg has been solved by Gentzen, and again by 

Wajsberg.212 By the results referred to in the preceding paragraph, solution 

of the decision problem follows for Pp and P+. And by the result of 

exercise 26.19 (2), solution of the decision problem follows also for P“. 

*‘°A. Kolmogoroff in Recueil Mathimatique de la Sociiti Mathimatique de Moscou, 
vol. 32 (1924-1925), pp. 646-667, and Ingebrigt Johansson in Composilio Mathematica, 
vol. 4 (1936), pp. 119-136. See also the paper of Wajsberg cited in the next footnote. 

Kolmogoroff considers primarily not the full minimal calculus but the pa o i 
obtained by suppressing the three primitive connectives, conjunction, disjunc ion, 
equivalence, and the axioms containing them (and finds for this calculus a simi 
result to that later found by V. Glivenko, quoted in exercise 26.15, for the intuitionistic 
propositional calculus). Addition of the three axioms for disjunction which are given in 
the text is mentioned by Kolmogoroff in a footnote, but the full minimal ca cu u 
the name ("minimal calculus" or “Minimalkalkul”) first occur in Johansson s, paper. 
Kolmogoroff uses for implication not the two axioms in the text but four axio 
from Hilbert that are equivalent to these; and he takes the three axioms or J 
from Ackermann. Johansson uses Heyting’s axioms (from the paper ci e 

209), suppressing one of those for negation. 4&-101. 
’“Mordchaj Wajsberg in Wxadomolci Matematyczne vol 46 ^ 
“’Gerhard Gentzen in Mathematische Zeitschri/t, vol. 39 (193 ), pp. ' ajcuius 

Wajsberg, loc.cil. Other decision procedures for the intu.t.omstic proFmsit.onal caiai 

are due to J. C. C. McKinsey and Alfred Tarski in The Journal of ' 
(1948), pp 1-15, to Ladislav Rieger in Acta FacuUatis Return '^Nauk 
tails Carolinae, no. 189 (1949), and to B. 0. Pil'dak in the Doklady Ahadimu »au 

SSSR, vol. 76 (1950), pp. 773-776. 
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EXERCISES 26 

26.0. Let be the partial system of propositional calculus based on 

equivalence as the only primitive connective, the rules of inference being 

substitution and the rule, from A = B and A to infer B. and the axioms 

being the two following: 

P = q = .q = p 
P=[q = r] = .p = q = r 

Prove the following theorems of Pfv: 

p=P=q=q 

p = p 
P = q= .r=.p = .q = r 

[s = .p = .q = r] = .p = q = r=s 

r = p=[q = r] = .p = q 

q = r = mp = q=mp = r 

Pi = ?i = ■ Pz = ?a = • Pi = Pz = • = ?a 

(The order in which the theorems are given is one possible order in which 

they may be proved. Heuristically, solution of 26.0 and 26.2 may be facili¬ 

tated by noticing that the given axioms are the complete commutative and 

associative laws of equivalence.) 

26.1. Hence prove the following metatheorem of P^. by a method anal¬ 

ogous to that of the proof of *229: If B results from A by substitution of N 

for M at zero or more places (not necessarily at all occurrences of M in A), 
and if b M = N, then I- A = B. 

26.2. Hence prove that a wff of P^ is a theorem if and only if every 

variable in it occurs an even number of times.*15 Hence the theorems of P^ 

coincide with the tautologies in which equivalence appears as the only 
connective. 

26.3. (1) Let Pj; be the system obtained from P^ by replacing the 

two axioms by the following single axiom: 

Prove that the theorems of Pj; are identical with those of P 

(2) Let P| be the system obtained from P^ by replacing the two axioms 
by the following single axiom: 

•bToS “ S“iS”ble"of e,“iv,1'"“cllculus is due ,o 
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q = r=.p==q = ., = p 

Prove that the theorems of PE are identical with those of P^. 

(3) Following Lukasiewicz, use the result of 26.2 and the method of §19 

to show that no shorter single axiom can thus replace the two axioms of P^,. 

26.4. Let PEN be the system obtained from P^ by adjoining negation as 

an additional primitive connective, and one additional axiom: 

~p = ~q = .p = q 

In a sense analogous to that of §23, demonstrate equivalence of PEN to 

the system PE/ obtained from P^ by adjoining / as an additional primitive 

symbol, and no additional axioms—negation being defined thus in PE/: 

-A -*■ A = f 

Hence prove that a wff of PEN is a theorem if and only if every variable in it 

and the sign ~ occur each an even number of times (if at all).114 Hence the 

theorems of PEN and of PE/ coincide with the tautologies in equivalence 

and negation, and in equivalence and /, respectively. 

26.5. Show that the system PEN is not complete in the sense of Post, 

since the wff p = ~p can be added as an axiom without making the wff P 

a theorem.115 

26.6. A partial system of propositional calculus is to have equivalence 

and disjunction as primitive connectives, and, besides the rule of substitu¬ 

tion, the two following rules of inference: from A and A = B to infer B; 

from A to infer A v BP* (1) Find axioms such that the theorems coincide 

with the tautologies in equivalence and disjunction. (2) With the aid of any 

previous results proved in the text or in exercises, show that the system (as 

based on these axioms) is complete in the sense of Post. (3) Discuss also the 

independence of the axioms and rules of inference. 

26.7. Making use of results already found for P2 (so far as they apply), 

show that a wff of PH is a theorem if and only if it is a tautology. 

26.8. (1) Establish the independence of/>z>.?3/>asan axiom of PH 

by means of the following truth-tables, in which 0 and 1 are the designated 

truth-values: 

“•This solution of the decision problem of the equivnlena-ne^tton calculuses due 

independently to McKinsey and M.ha.lescu, as a corollary of a so ^ 

the decision problem of the equivalence calculus; see TheJ0U^af°t. £ , j ^ noticed. 
2. p 175. and vol. 3. p. 55. Here again the relationship to 15.7 should1 be no ( 

“‘Eugen Gh. Mihailescu in Annates Sctenli/iques de l UmverssU de J y. P 

vol. 23 (1937), pp. 369-408, iv. . . . Mat hematics. 
“•These two rules are used by M. H. Stone in American Journal of Maine 

vol. 69 (1937), pp. 506-514. 
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p 9 P=>9 pq pyq 

III ~P 

0 0 0 1 1 1 3 

0 1 1 1 1 1 

0 2 2 4 1 4 

0 3 2 4 1 4 

0 4 4 4 1 4 

1 0 0 1 1 1 2 

1 1 1 1 1 1 

1 2 2 4 1 4 

1 3 2 4 1 4 

1 4 4 4 1 4 

2 0 0 4 1 4 3 

2 1 1 4 1 4 

2 2 0 4 4 1 

2 3 0 4 4 4 

2 4 1 4 4 1 

3 0 2 4 1 4 3 

3 1 1 4 1 4 

3 2 2 4 4 4 

3 3 2 4 4 4 

3 4 1 4 4 1 

4 0 0 4 1 4 0 
4 1 1 4 1 4 
4 2 0 4 4 1 
4 3 0 4 4 1 
4 4 1 4 4 1 

(2) By a modification of these truth-tables establish also the independence 

°f/>Z3.^Z5/)asan axiom of P*s. (Suggestion: In both parts (1) and (2), in 

order to minimize the labor of verifying tautologies mechanically, make 

use as far as possible of arguments of a general character.) 

26.9. Discuss the independence of the remaining axioms (1) of the 

system PH, and (2) of the system Pg. 

26.10. Consider a system of truth-values 0, 1,..v with 0 as the only 

designated truth-value, and the following truth-tables of the connectives of 

Ps: the value of p z> q is 0 if the value of p is greater than or equal to the 

value of q, and in the contrary case it is the same as the value of q\ the value 

of f>q is the greater of the values of p and q\ the value of p v q is the lesser of 
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the values of p and q\ the value of p = q is 0 if the values of p and q are the 

same, and in the contrary case it is the greater of the values of p and q\ 

the value of ~p is 0 if the value of p is v, and in all other cases the value of 

~P is v. Show that all theorems of Pg are tautologies according to these 

truth-tables. 

26.II. Hence show that the following are not theorems of P^: the law 

of double negation; the law of excluded middle; the converse law of contra¬ 

position; and the law of indirect proof, 

~P TD q 10 . ~p z* ~q ZD p. 

26.12. Following Kurt Godel, use these same truth-tables to show that 

IPi = P2] v [px s p3) v ... v \px = pn) 
V [Pi = Pi) V \pt = Pt\ V . . . V [p2 = pn] V.V (pn-l = pn] 

is not a theorem of P5 (for any n), also that this wff becomes a theorem 

of Pg upon identifying any two of its variables (by substituting one of the 

variables everywhere for the other), and hence finally that there is no system 

of truth-tables in finitely many truth-values such that under it not only are all 

theorems of Pg tautologies but also all tautologies are theorems of Ps u7 

26.13. With the aid of the deduction theorem (which can be demon¬ 

strated for Pg in the same way as for P2), show that the following are theo¬ 

rems of P1 

3 . p 3 ~q 3 ~p 

p zd —p 

> q ZD . 3 ~p 

~~ a P V ~P 
~,p~p 

(Law of reductio ad absurdum.) 

(Converse law of double negation.) 

(Law of triple negation.) 

(Law of contraposition.) 

(Weak law of excluded middle.) 

(Law of contradiction.) 

26.14. Let Prbe the system obtained by adjoining the law of excluded 

middle, pv ~p, to P^ as an additional axiom. Prove f204 as a theorem of 

Pr. Hence show that the theorems of Pr are the same as the theorems of 

PH—therefore, by the result of 26.7, that the theorems of Pr are the same as 

the tautologies (according to the usual two-valued truth-tables, §15). 

26.15. Using the results of 26.13 and 26.14, establish the following results 

“’Stamslaw JaSkowski has constructed a system of truth-tables in 

truth-values which is such that under it the tautologies coinci e.wl , McKinsey, 
the intuitionistic propositional calculus (i.e., which in the terminology o^cKm y. 

is characteristic for the intuitionistic propositional calculus). Sm ip 58-01. 
national de Philosophic Scientt/ique. Paris 1935 (publishe h '^ons 0f the 

(Added in proof. See further a paper by Gene F. Rose in the Transactions , 

American Mathematical Society, vol. 75 (1953), pp. 1-19.) 
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of V. Glivenko: If a wff A of P's is a tautology according to the usual two¬ 

valued truth-tables, then is a theorem of P‘s. A wff -A of P's is a theo¬ 

rem of P‘s if and only if it is a tautology according to the usual two-valued 

truth-tables. 

26.16. As a corollary of the results of 26.15, establish also the following 

result of Godel:*18 A wff A of P$ in which conjunction and negation are the 

only connectives appearing is a theorem of P's if and only if it is a tautology 

according to the usual two-valued truth-tables. 

26.17. Discuss the independence of the axioms of Pr (exercise 26.14), 

showing in particular that the axiom p z> ~p Z> is non-independent. 

26.18. Let Pg be the system obtained from P's by replacing the axiom 

Pz> ~p^ ~p by the two following axioms: 

- • P ~P 
p Z> q Z> *~q Z3 ~p 

(1) Show that the theorems of Pg are the same as those of Pg. (2) Show that 

the theorems of Pg which can be proved without use of the axiom ~p Z5 . p z> q 

are the same as the theorems of P“. (3) Discuss the independence of the 

axioms of Pg. 

26.19. Let P‘w be the system obtained from Pp by adjoining / as an 

additional primitive symbol and / 3 p as an additional axiom. Let P“ be 

the system obtained from Pp by adjoining / as an additional primitive 

symbol and no additional axioms. Show that *229 is valid as a 

metatheorem of Pg, and of P“. (1) Hence establish the equivalence of Pg 

and P‘w in the sense of §23. (2) Likewise establish the equivalence of P“ 

and P“ in the sense of §23.119 

26.20. Establish the following result (substantially that of Kolmogoroff 

referred to in footnote210): In any theorem of the full propositional calculus 

in which the connectives occurring are only implication and negation— 

let every variable a be replaced throughout by its double negation ~~a. 

The resulting formula is a theorem of the minimal calculus P“. 

26.21. Establish the equivalence of P“ and the system P“ obtained from 

it by replacing its last axiom (the law of reductio ad absurdum) by the axiom 

P=>~qz> ,qz>~p. 

26.22. For the system Pp, show that implication is definable from con- 

PaPer„cited in footnote 271. and a paper by GOdel in Ergebnisse 
xn{*IJ‘.athematlschen Colloquiums, no. 4 (1933), pp. 34-38. 

latfr rega5din? ^ minimal calculus was found by Johansson, loc.cit.; and 
neeatinn ?“Jsbfrg’ loc:ct.t- for Kolmogoroffs minimal calculus with implication and 

gation as only primitive connectives. (See footnotes 210, 211.) 
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junction and equivalence, in the sense that pZ}q = .p = pqisa. theorem 

of the system. 

26.23* For the system Pp, show in a like sense that both implication and 

conjunction are definable from disjunction and equivalence. Hence disjunc¬ 

tion, equivalence, and / constitute (in an appropriate sense) a complete 

system of independent primitive connectives for P‘w (see 26.19).220 

26.24. By means of the truth-table of exercise 26.10 with v = 2, show, 

for the system P5, that equivalence is not definaDle from disjimction and 

negation. Hence, by the result of the preceding exercise, disjunction, equiv¬ 

alence, and negation constitute (in an appropriate sense) a complete 

system of independent primitive connectives for Pg.220 

27. Formulations employing axiom schemata. Formulations of the 

propositional calculus so far considered have been based each on a finite 

number of axioms, although the program of §07 allows also that the number 

of axioms be infinite, provided there is supplied an effective method by 

which to recognize a given wff as being or not being an axiom. 

When the axioms are infinite in number, of course they cannot be written 

out in full, and it is necessary rather to indicate them (or all but a finite 

number of them) by one or more statements in the syntax language each 

introducing an infinite class of axioms. Such a statement in the syntax 

language may always be reworded as a rule of inference with an empty class 

of premisses, and in this sense the distinction between an infinite and a finite 

number of axioms is illusory. The more significant distinction is between 

formulations which rely more or less heavily on syntactical statements (such 

as rules of inference) to take the place of separately stated axioms in the 

object language—but here no sharp line of division can be drawn. 

Formulations of the kind which we describe as based on an infinite number 

of axioms have important advantages in some cases. We consider in this 

section a particular class of such formulations, namely, those in which the 

primitive basis involves axiom schemata.*21 

‘“Waisberg has shown (loc.cit.) that implication-conjunction-disjunction-/ andi®' 
plication-conjunction-disjunction-negation constitute complete systems o in P* 

primitive connectives tor P*w and P*s respectively, i.e., for the intuitiomstic proposi- 

t,0««A formulation of a different kind having an infinite number of a™™2 
by choosing some suitable system of connectives as primitive and e . . . ut jn 
tautology an axiom, no rules of inference being then necessary as po 

effect, by Herbrand in 1930. . . tus and no 
This procedure provides no deductive analysis of the propos ^icular ’assump- 

opportunity to consider the effects of making or rejecting van antecedent— 

tions (such as. e.g.. the law of excluded middle or the ^itTd todS^ Seprop- 
cf. §26). Nevertheless it may be useful in a case where it lsdes 
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An axiom schema represents an infinite number of axioms by means of 

an expression containing syntactical variables—a form, in the sense ol 

§02—which has wffs as values.222 Every value of the expression is to be taken 

as an axiom. For convenience of statement we shall indicate this by writing 

the expression itself in the same manner as an axiom. 

An example of a formulation of the propositional calculus with axiom 

schemata is the following system P. 

The primitive symbols and the wffs of P are the same as those of Pa (§20). 

The axioms, infinite in number, are given by the three following axiom 

schemata: 

Ad.Bd A 

Ad[BdC]d.AdBd.AdC 

•A d ~B id . B d A 

And the only rule of inference (if we do not count the axiom schemata as 

such) is the rule of modus ponens. 

*270. Every theorem of P is a theorem of Pa. 

Proof. Every axiom of P either is an axiom of Pa or is obtained from an 

axiom of Pa by a substitution (*201) or a simultaneous substitution (*210). 

And the one rule of inference of P is also a rule of inference of Pa. 

**271. Every theorem of Pa is a theorem of P. 

Proof. Since every axiom of Pa is an axiom of P, and the rules of inference 

are the same except for the rule of substitution (*201), it will be sufficient 

to show that the rule of substitution is a derived rule of P. This is done as 
follows: 

In an application of the rule of modus ponens, let the major premiss be 

C 3 D, the minor premiss C. and the conclusion D. If we substitute the 

wff B for the variable b throughout in both premisses and in the conclusion, 
the three resulting wffs, 

SbC => D|, S*C|. S*D|, 

are also premisses and conclusion of an application of the rule of modus 

gjpSSSsK 
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ponens, in view of the fact that 

SbC =) D| 

is the same wff as 

S£C| 3 SqD|. 

Since the only rule of inference of P is modus ponens, and since the result of 

making the substitution of B for b throughout an axiom of P is again an 

axiom of P, it follows that a proof of a wff A as a theorem of P can be trans¬ 

formed into a proof of 

S*A| 

as a theorem of P by just substituting B for b throughout, in every wff in 

the proof. 

This completes the proof of the metatheorem **271.123 It may of course be 

used as a derived rule of P, but we have numbered it with a double asterisk 

as a metatheorem of P2. 

As a corollary of **271, we have also the following metatheorem of Pf: 

**272. There is an effective process by which any proof of a theorem of P, 

can be transformed into a proof of the same theorem of P2 in which 

substitution is applied only to axioms (i.e., in every application of 

the rule of substitution the premiss A is one of the axioms of P2). 

In the foregoing we have chosen the system P as an example, because it 

is closely related to the particular formulations of the functional calculi of 

first order that receive treatment in the next chapter. It is clear, however, 

that any formulation of the propositional calculus or any partial system of 

propositional calculus, if the rules of inference are modus ponens and sub¬ 

stitution, may be reformulated in the same way, i.e., we may replace each 

axiom by a corresponding axiom schema and take modus ponens as the one 

rule of inference, so obtaining a new system which has the same theorems 

as the original one. 
A like reformulation is also possible if the rules of inference are substitution 

and one or more rules similar in character to modus ponens. For examp e, 

the system PL of §25 may be reformulated as follows, as a system u 

•“The remark should be made that, in spite of the equivalence of P to P* m tie strong 

sense that is given by *270 and -271. and in spite of the ^^ 
less P is not complete in any of the three senses of §18. In factthe f ^Semantically, 
could be added to P as an axiom without producing any ^rJations than 
this is connected with the fact that P has a wider class o substitution) no 
P,. the rules of P being (in consequence of the omission of the rule 
longer sufficient to distinguish between propositional variables ana pr 

constants. 
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whose theorems are the same as those of PL. The primitive symbols and the 

wffs of P^, are the same as those of PL. The one rule of inference is: From 

A |. B | C and A to infer C. And the axioms are all the wffs, 

A | [B | C] |. A | [C | A] |. D | B |. A | D |. A | D, 

where A, B, C, D are wffs (to be taken in all possible ways). 

28. Extended propositional calculus and protothetic. 
The extended propositional calculus of Russell and Lukasiewicz-Tarski**1 has, 

besides notations of the propositional calculus, also the universal quantifier or 
the existential quantifier or both (cf. §06), with propositional variables as the 
operator variables. 

Primitive symbols for a formulation of the extended propositional calculus 
may be selected in various ways, among which may seem most obvious the 
addition of one or both of the quantifiers to the primitive symbols of a formula¬ 
tion of the propositional calculus. But because this latter method, when applied 
to P, or Pt, leads to non-independence of the primitive connectives and operators, 
Lukasiewicz and Tarski propose instead implication and the universal quantifier 
as primitive connective and operator.1** Other connectives and operators are 
then introduced by definition. E.g., the following definitions may be made:11* 

/ - (s)s 

—A -*• A =3 / 

(3c)A - ~(c)~A 

/ (3s)s 

(A =>c B] -> (c)[A =3 B] 

And other sentence connectives may then be defined as in §11. 

( ,MThe extended propositional calculus was treated by Russell under the name of 
"theory of implication" in the American Journal of Mathematics, vol. 28 (1906), pp. 
169-202. It was treated by Lukasiewicz and Tarski as "erweiterter Aussagenkalkiil" 
in the Comptes Rendus des Stances de la Sociiti des Sciences et des Letlres de Varsovie 
Classe III, vol. 23 (1930), pp. 44-60. 

***As appears from an informal account in The Principles of Mathematics (1903) and 
from his further discussion of the matter in 1906, Russell also intended to use these 
primitives for the extended propositional calculus. But in 1906 he takes negation as an 
additional primitive connective on the ground that it would otherwise be impossible 
to express the proposition that not everything is true—which, he holds, is adequately 
expressed by ~(P)P but not by (p)p id (s)r. (To the writer it would seem that Russell’s 
position of 1906 involves the very doubtful thesis that there is one indispensable con¬ 
cept of negation, given a priori, which it is the business of the logician to reproduce: 
perhaps not even the extreme realism of Frege would support this.) 

nr 19*°3 Ru.sse11 defines >n effect, as /> =>, r. In 1906 he considers and rejects 
tte defmition of as p zd (s)i. Also due to Russell (1903. 1906) is the definition of the 

disnitS0? ^ ?F' moreSenerally. oi AB). which is suggested by the third of the four 
displayed formulas on the next page. 

The definition of ~p as p-=i,r is foreshadowed in C. S. Peirce's paper of 1885 
(American Journal of Mathematics, vol. 7. see pp. 189-190). And it may havVbeen from 
this source that Russell had the idea. However, Peirce does not explicitly use the uni 
versal quantifier in a definition of negation, but rather expresses the negation of p 

y p => a. where a is explained verbally as an "index of no matter what token " 
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Adopting the Lukasiewicz-Tarski primitives and the above definitions, to¬ 

gether with conventions about omissions of brackets parailel to those of §11, 

we may cite the following as some examples of wffs (sentences or propositional 

forms) which are true or have always the value truth in the intended interpre¬ 

tation and therefore ought to be theorems: 

P => ? =>* [?=>'] = r 
p 13 q = .q Z5r zzr.p or 

Pi s • P => [9 => '] =>r r 
(P)(3f)(0 -p => q => -q ^ p =* r 

Using still the same primitives, and relying on the intended interpretation, we 

can show that the extended propositional calculus and the formulation P, of 

the propositional calculus are equivalent in a sense similar to that in which P, 

and P, were shown to be equivalent in §23. For it is clear that (b)B is concurrent 

(in the sense of §02) to the conjunction CD,*'7 where C is obtained from B by 

substituting / rs / (i.e., (s)s zd (s)s) for all free occurrences of b, and D is obtained 

from B by substituting / (i.e., (s)s) for all free occurrences of b. Given a wff A of 

the extended propositional calculus, we may iterate the operation of replacing 

a wf part (b)B by the conjunction CD just described, only obeying the restric¬ 

tion that this replacement is not be made if (b)B is the particular wff (s)s. 

After a sufficient number of iterations of this, the wff A will be changed to a 

wff A0 in which the universal quantifier does not appear except in wf parts 

(s)s. Upon replacing (s)s everywhere by the primitive symbol / of P,, A0 becomes 

a wff Af of P,. The correspondence between A and Ar is a many-one correspond¬ 

ence between wffs of the extended propositional calculus and wffs of Pt. And by 

assumption (4) of §02, A and Ar are concurrent. In view of the solution of the 

decision problem of P,, this leads us to a solution of the semantical decision 

problem of the extended propositional calculus; and in formulating the extended 

propositional calculus as a logistic system we may be guided by the demand that 

solution of the decision problem for provability shall be the same as of the 

semantical decision problem. 
The protothetic of Le$niewski“» has, in addition to the notations of the extend¬ 

ed propositional calculus, also variables whose values are truth-functions (in 

the sense of the last paragraph of §05), say 

f\g\ h\ f\. g\. h\, 

as variables whose range consists of the singulary truth-functions, and 

/*. g\ h\ f\. e\. h\, 

as variables whose range is the binary truth-functions, and 

_ /*. *•. **. n. g\. k- /;•••• 

M7In addition to the use of the word "conjunction’'to denote the ^speak of 
associated truth-function, as explained in §05. it will ^ 
a wff CD (formed from C and D by means of this connective) asa » 
Similarly a wff C V D will be called “a disjunction, a wff C = D an eq 

a wff ~C "a negation,” and so on. „r^.,rmnHlaeenderMathe- 
,MStanislaw Le4niewski, "Grundzuge ernes neuenderGnmdlagen 

matik,” in Fundamenta Mathematical, vol. 14 (1929), pp. 1-8 • 
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as variables whose range is the ternary truth-functions, and so on. Further, the 

notation for application of a function to its argument or arguments (see §03) is 

provided for among the primitive symbols. And the quantifiers are allowed to 

have not only propositional variables but variables of any kind as operator 

variables. LeSniewski allows also variables of still other types, e.g., variables 

whose values are propositional functions of truth-functions, but these seem to 

play a less important role, and we venture to change his terminology to the 

extent of excluding them from protothetic.*** Finally, LeSniewski allows asser¬ 

tion of sentences only, and not of wffs containing free variables (cf. the end of 

§00); but this is from one point of view a non-essential feature, and we would 

propose that the name protothetic be applied also to systems, otherwise like 

LeSniewski’s, in which wffs with or without free variables may be asserted. 

For the primitive symbols of a formulation of protothetic, besides the various 

kinds of variables and the notation for application of a function to its argument 

or arguments, we may take implication as primitive sentence connective, and 

the universal quantifier as primitive operator (allowing it to have a variable of 

any kind as operator variable). Or, following a discovery of Tarski,**0 implication 

may be replaced by (material) equivalence as primitive connective. 

Equivalence of protothetic to extended propositional calculus, and thus ulti¬ 

mately to propositional calculus, may be shown by a similar method and in a 

similar sense to those for the equivalence of extended propositional calculus to 

P,. In lieu of an explicit statement of the many-one correspondence between 

wffs of protothetic and of extended propositional calculus (which would be 

lengthy), we shall merely indicate the correspondence by giving some examples. 

For the wff**1 (/*) .p zd (?)/*(?) = (?)./> id /*(?) of protothetic, the correspond¬ 

ing wff of extended propositional calculus is the conjunction of the four 
following:*** 

p ■=> (q)t = (q) .p =) t 

p =3 (q)q = (q) .p =) q 

p =5 (?) ~? = (?) . p Z3 ~q 

p=>(q)f=(q).p=3f 

Again, for the wff (/*) .p — q ^ (r) ./*(£, r) = /*(?, r) of protothetic, the cor¬ 

responding wff of extended propositional calculus is a conjunction of sixteen 

others, which we shall not write out in full but which include, e.g., the following: 

allowpiH ^^PJak Protothetic when variables of such higher types are to be 

Sl l 'f cl’' PT1°,\ SmCC ** was written a comprehensive accost of proto- 
Sllia^ appCared in Studia L°eica (Warsaw), vol. 1 (1953). pp. 
Protothetic* Propositional calculus with quantifiers, elementary 
ZrntnthJr protothetic* to what we here call extended propositional calculus 
protothetic. and higher protothetic respectively.) oaicuius, 

Fundamenta Mathemaiicae, vol. 4 (1923), pp. 196-200. 

the le^a/ iD partiCaIar Wlf3 of Pathetic, the superscripts after 
whose valu^ ire om‘tted- No confusion can result among variables 

denoting the trutS^ur^h^ " " °f ar*ument3- or even w“h the letter / 

AB$. A B* ° ° wefmean' of conjunction 
naerstooa according to the convention of association to the left (§11). 
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p = q => (r) .t = t 

p = q (r) .p vr = q vr 

P = q=>(r).pczrs.qcr 

p = q => (r) .p =q 

P = q=>{r).p^r = .q=3r 

P = q => (r) .r = r 

For a wff (say) (/*)B of protothetic, where B contains /* as a free variable only 

and contains no other truth-functional variables, the corresponding wff of 

extended propositional calculus would be a conjunction of 250 others (there are, 

namely, 256 different ternary truth-functions, and we must use some systematic 

method of setting down for each one a propositional form which has it as an 

associated function).*** If the entire given wff (as distinguished from a wf part 

of it) has free truth-functional variables, it is necessary first to prefix universal 

quantifiers binding these variables, and then to apply the indicated method of 

obtaining a corresponding wff of extended propositional calculus. 

Like propositional calculus, both extended propositional calculus and proto¬ 

thetic or a modified form of protothetic**4 will occur as parts of more extensive 

logistic systems to be considered later—in particular, of functional calculi of 

second or higher orders. However, in the treatment of these logistic systems which 

we shall adopt, extended propositional calculus and protothetic do not play a 

fundamental role in the way that the propositional calculus does. Therefore in 

this section we have confined ourselves to a brief sketch. 

EXERCISES 28 

28.O. Using the solution of the decision problem which is indicated in the 

text, verify the four examples which are given of wffs of extended propositional 

calculus that are true or have always the value truth. (Of course, where possible, 

make use of known results regarding propositional calculus in order to shorten 

the work.) 

28.I. In the same way, verify the following as wffs of protothetic that have 

always the value truth.**1 

***For this solution of the decision problem of protothetic, cf. LeSniewski, oc.ct., 

and references to Lukasiewicz and to Tarski which are there given. , 
mIn the case of the functional calculus of fourth or higher order, the modi ica 0 

protothetic (besides a change in the letters used as truth-functional vana , 
consist in allowing the notation for application of a function to its argumen 
only in such combinations as a(b), a(b, c), a(b, c, d).where a is in eac... -1 

truth-functional variable of appropriate kind and b. c, d, . .. must be Pr 
variables. For reasons which will become clear later, this may be consl°er“1. . « 
fication in the particular formulation of protothetic rather than in pro ar^ 
the decision depending on what notion of equivalence between logis ic ys Qf 
willing to accept for this purpose. But, e.g., although 28.1(4) and • ( ) ^ ^ 
formulations of protothetic which are contemplated in this section, ‘e?ctters / g). 
of any functional calculus of higher order (even with change of the lette /.j; 

On the other hand, protothetic occurs as a part of the logistic system of Chapte 

with no modifications other than essentially trivial changes of notation. 
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(1) *“ p = q =3 •/(/>) = /(?) 

(2) p=Eq=B(f) .f(p) => f(q) 

(3) m pq = (f) • P = • f(P) = f(q) 

(4) /(/>. p) Z>. f(p. ~p) = (?)/(/>. q) 

(5) g(/>) = g(i)P v g(/) -^> (Boole's law of development.**1) 

(0) g (p. q) = g(t, t)pq V g(t, /) p ~q V g(/. t) ~p q V g(/. /) 
(Boole's law of development in two variables.**1) 

(7) (3g)(P) ./(£(/>))=g(f(P)) =q 

(8) *** pq = (f) .f(p.q) = f(t.t) 

(9) **' pq= (t).f(p.q) =f(q.p = q) 

28.2. With aid of the solution of the decision problem which is indicated in 

the text, establish a principle of duality for a formulation of extended propo¬ 

sitional calculus with the Lukasiewicz-Tarski primitives, analogous to the prin¬ 

ciple of duality *161 for the propositional calculus. 

28.3. Likewise establish a principle of duality for a formulation of protothetic 
with implication as the only primitive sentence connective, and the universal 
quantifier as the only primitive operator. 

29. Historical notes. The algebra of logic had its beginning in 1847,839 

in the publications of Boole and De Morgan.140 This concerned itself at 

first with an algebra or calculus of classes, to which a similar algebra of 

'“Notice the relationship of this to the metatheorem of exercise 16.2 (or to the 
analogue of this metatheorem for any other formulation of the propositional calculus). 
Namely, all theorems given by this metatheorem are in a certain sense included in the 
one theorem of protothetic, being directly obtainable from it by a rule of substitution 
for propositional variables, like *101 or *201, and a rule of substitution for truth-func¬ 
tional variables, analogous to the rule of substitution for functional variables which is 
discussed in the next chapter. Thus the relationship is like that of, e.g., the theorem 
~p :d . p rs q of the propositional calculus to the metatheorem that every wff ~A zs . 
A D B is a theorem. 

M,Cf. Tarski in the paper cited in footnote 230. 
“’Given by George Boole for the class calculus. Notice the relationship to the meta- 

theorem of exercise 24.9 (concerning reduction to full disjunctive normal form). 
Frora a paper by Boleslaw SobociAski. Z Boda* nad Prototetyhq. which was 

published as an offprint in 1939, but nearly all copies of which were destroyed in the 

hv fw!rSh f" added cxPlanatory introduction was published in 
i/4proA)/L/icInSt,tUt d £tudCS Polona,ses en Belgique” under the title An Investigation 

i0 “7^ere W?.re t arm^T of anticipations of the idea of an algebra or a calculus of 

these wTc'in vabriroLC,bn,Z' Plouc9uet- J H. Lambert. G. F. Castillon, but 
devdonment Sl X T T T*, °r incomP,ete never led to a connected 

lopment. See Louis Couturat s La Logtque de Leibniz (1901) and Obuscules el 
Frogmen s InidUs de Leibniz (1903); C. I. Lewis’s A Survey 0, Symbolic LogU19181 

TohaCn ur?enS?nTS A T,ealtse °t Formal Logic (1931); Karl Durr's "Die Loeistik 
"AhH KrHe,nrKh V*™berts" ,n Festschri/t Andreas Speiser (1946)- and the writer's 

Bibliography of Symbolic Logic” in volumes 1 anS 3 of 

George Boole, The Mathematical Analysis of Topic j at ,• .. . 

* o/ Augustus Dz Mo^r^iSfc-* 01 
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relations241 was later added. Though it was foreshadowed in Boole’s treat¬ 

ment of "Secondary Propositions,” a true propositional calculus perhaps 

first appeared from this point of view in the work of Hugh MacColl, begin¬ 

ning in 1877.242 

The logistic method was first applied by Frege in his Begriffsschrift of 

1879. And this work contains in particular the first formulation of the prop¬ 

ositional calculus as a logistic system, the system PF of 23.6. Due to 

Lukasiewicz243 as a simplification of Frege’s formulation is the system Pt, 

which we have used in this chapter (§20). 

However, Frege’s work received little recognition or understanding until 

long after its publication, and the propositional calculus continued develop¬ 

ment from the older point of view, as may be seen in the work of C. S. Peirce, 

Ernst Schroder, Giuseppe Peano, and others. The beginnings of a change 

(though not yet the logistic method) appear in the work of Peano and his 

school. And from this source A. N. Whitehead and Bertrand Russell derived 

much of their earlier inspiration; later they became acquainted with the 

more profound work of Frege and were perhaps the first to appreciate its 

significance.244 

After Frege, the earliest treatments of propositional calculus by the lo¬ 

gistic method are by Russell. Some indications of such a treatment may be 

found in The Principles of Mathematics (1903). It is extended propositional 

calculus (§28) which is there contemplated rather than propositional cal¬ 

culus; but by making certain changes in the light of later developments, it 

is possible to read into Russell’s discussion the following axioms for a partial 

system PRK of propositional calculus with implication and conjunction as 

primitive connectives, the rules of inference being modus ponens (explicitly 

stated by Russell) and substitution (tacit): 

M,De Morgan, Syllabus of a Proposed System of Logic (1860), and a PaP^r jn,^e 
Transactions of the Cambridge Philosophical Society, vol. 10 (1864), pp. ’ 
C. S. Peirce, various papers 1870-1903, reprinted in volume 3 of his CoUeeUd r*"*' 

J. J. Murphy, various papers 1875-1891; Ernst SchrOder. Algebra der Login, 

^Mathematical Questions, vol. 28 (1877), pp. 20-23; Proceedings of the 
Mathematical Society, vol. 9 (1877-1878), pp. 9-20, 177-186, and vol. 10 (161*- » • 
pp. 16-28; Mind. vol. 5 (1880), pp. 45-60; Philosophical Magazine. 5s. vol. 11 (»«»*• 

PP*«S^Lukasiewicz and Tarski, "Untersuchungen flber den 
Comptes Rendus des Stances de la Sociiti des Sciences et des Lettres de Varsom . 

HI. vol. 23 (1930), pp. 30-50. t . .. _ . of Whitehead and 
‘“An excellent historical and expository account of the work of 

Russell is found in Chapter 2 (by W. V. Quine) of The Philosophy of Alfred « 

Whitehead. 
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pq=>p 

IP 3 q][q =>r]ZD ,p=>r 

P=>[qz>r]z> ,pq=>r 

pq=>r=> .p=> .q=)r 

[P =5 q][p => r) => . p => qr 

piDqZ^pZDp 

As a part of Russell’s treatment of extended propositional calculus in 1906,m 

there appears a formulation Pr of the propositional calculus, with implication 

and negation as primitive connectives, modus ponens and substitution as 

rules of inference, and the following axioms: 

P 
P 

P=>P 
pz> .qztp 

q=> ,qz> rZ) ,p\ 

[q =5'] => • q => ■ P 

P 
~~p: 

->~P 
P 

> ~P 

pZZ ~qz> ,qz> ~p 

r 

r 

The formulation PR of the propositional calculus (§25) was published by 

Russell in 1908.*46 and was afterwards used by Whitehead and Russell in 

Principia Mathcmatica in 1910. It may be simplified to the system PB by 

just deleting the axiom whose non-independence was discovered by Paul 

Bemays.*49 Other simplifications of it are the system PN, due to J. G. P. 

Nicod,*47 and the system PG, due to Gotlind and Rasiowa.*48 

Statement of the rule of substitution was neglected by Frege in 1879, but 

appears explicitly in connection with a different system in his Grundgesetze 

der Arxthmctik, vol. 1 (1893). First statement of the rule of substitution 

specifically for the propositional calculus is by Louis Couturat in Les 

Princtpes des Mathematiqucs (1905), but his statement is perhaps insufficient 

as failing to make clear that the expression substituted for a (propositional) 

variable may itself contain variables. Russell states this rule more satis¬ 

factorily in his paper of 1906. but omits it in 1908. And in Principia Mathc- 

matica the authors hold that the rule of substitution cannot be stated, 

writing: “The recognition that a certain proposition is an instance of some 

general proposition previously proved ... cannot itself be erected into a 

'lutret[lcan .J°^trnal of Mathematics, vol. 30 (1908), pp. 222-202 
"Mathemalische Zeitschrift. vol. 25 (1920), pp. 305-320. 

tht ™iU,s°Phicai Society, vol. 19 (1917-1920). pp. 32-41. 
Raoi“nk ,in ^ Norsk Matematisk Tidsskrifl. vol. 29 (1947) dd 1-4- H 
Rasiowa, ibid.. vol. 31 (1949), pp. 1-3. ' pp' 
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general rule.” This seems to show that Whitehead and Russell had aban¬ 

doned Frege’s method ot stating rules of inference syntactically, or perhaps 

had never fully accepted it. But C. I. Lewis, writing in immediate connection 

with Principia Mathematica, states the rule of substitution explicitly for 

a proposed system of Strict Implication in 1913,249 and in his Survey of 

Symbolic Logic (1918) he supplies this rule also for the system of Principia. 

And Russell, in his Introduction to Mathematical Philosophy (1919), recog¬ 

nizes that there is an omission in Principia in failing to state the rule of 

substitution for the propositional calculus. 

The device of using axiom schemata, as in §27, so that a rule of sub¬ 

stitution becomes unnecessary was introduced by J. v. Neumann.250 

For the propositional calculus, the name ‘‘calculus of equivalent state¬ 

ments” was used by MacColl. The name ‘‘Aussagenkalkul” was introduced 

by Schroder in German in 1890 and 1891. Perhaps as a translation of this, 

Russell uses ‘‘propositional calculus” in 1903 and again in 1906—but, at 

least in 1903, he applies the name to extended propositional calculus rather 

than to propositional calculus proper (according to the terminology now 

standard). Couturat251 translates Russell's ‘‘propositional calculus” into 

French as ‘‘calcul des propositions,” but at the same time he so alters Rus¬ 

sell’s method that the name comes to be applied to propositional calculus 

proper. The name ‘‘calculus of propositions” was used by Lewis in a series 

of papers beginning in 1912 and in A Survey of Symbolic Logic (1918). Since 

then the names “propositional calculus” and “calculus of propositions” have 

received general acceptance in the sense, or about the sense, in which we 

have used the former.252 

li*The Journal of Philosophy, Psychology, and Scientific Methods, vol. 10 (1913), 
pp. 428-438. . 

“°Mathematische Zeitschrift, vol. 26 (1927), pp. 1-46. Von Neumann's device may dc 

employed as a means of formulating a logistic system for which a rule of subs i u 1 
cannot be used because of the absence of propositional variables or other varia 
suitable for the purpose. Thus in particular a simple applied functional calculus o 
order, in the sense of the next chapter (§30), must be formulated with the ai o 
schemata rather than a rule or rules of substitution. u th+malik 

See a discussion of the matter by Hilbert and Bernays in Grundlagen der ntntal 
vol. 1, pp. 248-249; also, specially for the propositional calculus, by &:rnays 1 g 

Calculus (1935-1936), pp. 44-47; also by Bernays, ibid., pp. 6°-°3 
“'In Revue de Mitaphysique et de Morale, vol. 12 (1904), pp. 25-30, an 

Principes des Mathimatiques (1905). .. princ,A,a 
“•Other names found in the literature are theory of(. "sentential 

Mathematica and in Russell's Introduction to Mathematical Philosophy) mAx j 
calculus" (i.e.. calculus of sentences, by a number of rec<wnten). Bu both ol« ^ 

names seem rather inappropriate because they refer to certa‘ 7 meanings (impli- 
the calculus (deducibility, sentences) rather than to corresp 8 would more 
cation, propositions). Indeed a theory of deduction or a cakulusofsentenc^wou 
naturally be a branch of logical syntax and be expressed in a meta-languag 
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A formulation of the propositional calculus with a single axiom was given 

by Nicod in January 1917,153 the system Pn of §25. Modifications of this, 

having still a single axiom, are the systems Pw of Wajsberg,*54 and PL 

of Lukasiewicz.**5 All three systems are based on Sheffer’s stroke (non- 

conjunction) as primitive connective and employ a more powerful rule of 

inference in place of modus ponens. 

Regarding formulations of the propositional calculus with a single axiom 

and with only modus ponens and substitution as rules of inference, see the 

historical account given by Lukasiewicz and Tarski in the paper cited in 

footnote 243. Of these, the system PL (exercise 23.7) is due to Lukasiewicz 

and is given in the same papei; the system P, (23.8) is also due to Lukasie¬ 

wicz, being credited to him in a paper by Boleslaw Sobocihski;*5® and the 

system of Ps (23.9) is obtained, by a method of Sobocihski,*5® from the single 

axiom of exercise 18.4 for the implicational propositional calculus (the 

system P|j, which latter is due to Lukasiewicz.*57 

Another formulation of the implicational propositional calculus is the 

system Pg of exercise 18.3, which is due to Tarski and Bemays.*58 Wajsberg 

has shown that,*59 the rules of inference being always modus ponens and 

substitution, a complete formulation of the implicational propositional cal¬ 

culus becomes a complete formulation of the (full) propositional calculus 

with implication and / as primitive connectives upon adjoining / z> p as an 

additional axiom. Hence the system Pw of 12.7, obtained thus 

from Pj,, and the system Pa (§26), which is obtained in the same way 
from P[. 

Le£niewski was especially interested in equivalence as a primitive con¬ 

nective because he took definitions in sense (3) of footnote 168, and therefore 

expressed definitions, in the propositional calculus or in protothetic, as 

(material) equivalences.*" The first formulation of a partial system of prop- 

ositional calculus with equivalence as sole primitive connective (such that 

M*In the paper cited in footnote 247. 
^MonatshgfU fiir Mathematik und Physik. vol. 39 (1932), pp. 259-262 

cationof Niwd?£^mSdPa^rfC,tud ^ precedin* footnote- Still another modifi- 
S footnote 7lS* Lukasiew‘C2- - ^en by LeSniewski in the paper cited 

Filozo/ictny. vol. 35 (1932), pp. 171-193. 

(AdZdii'ZHn °/l ROyalJuSu Academy- vo1- 62 section A no. 3 (1948), pp. 25-33 
given^fcfy c f*40®* for propositionalclkuluTare 
pp °55^164.*‘ The JOUntai °f ComP^e SysUms. vol. 1 no. 3 (1953). 

foop£ t2h4e3aCC°Unt °f ^ mattCr by tuka5-wicz and Tarski in the paper cited in 

“In Wiadomoicx MaUmalyczne. vol. 43 (1937), pp. 131-168 
See the paper cited in footnote 228, pp. 10-11. 
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all tautologies in this connective are theorems) was by LeSniewski.281 Other 

such formulations are the system Pfv of 26.0, by Wajsberg;262 and the 

systems with a single axiom, PE of 26.3(1). by Wajsberg, and PE of 

26.3(2), by Lukasiewicz.263 The system PEN of 26.4, with equivalence and 

negation as primitive connectives, is due to Mihailescu.264 

Returning to formulations of the full propositional calculus, we mention 

also the system PA of Lukasiewicz, having implication and negation as 

primitive connectives, modus ponens and substitution as rules of inference, 

and the three following axioms: 

P 
~P=>P 

p-=o ,~p 

r 

A proof of the completeness of PA (not quite the same as the original treat¬ 

ment of the system by Lukasiewicz265) is outlined in exercise 29.2 below. 

Opposite in tendency to such formulations as P,, and PA, in which econ¬ 

omy is emphasized, are formulations of tti propositional calculus by Hil¬ 

bert268 which are designed to separate the roles of the various connectives, 

though at the cost of economy and of independence of the primitive connec¬ 

tives. Of this latter kind is the system PH (§26), which is one of a number of 

closely related such formulations that are given by Hilbert and Bemays in 

the first volume of their Grundlagen der Mathematik (1934).287 

MIIn the same paper, p. 16. , 
«**In the paper cited in footnote 259, p. 163. The axioms were previously announced, 

without proof of their sufficiency, in the paper cited in footnote 264. 
***The system of 26.3(1) is in Wajsberg s paper of footnote 269. p. 165, prevnousiy 

announced in the paper of footnote 254. The same papers have also two other or 
lations of the equivalence calculus by Wajsberg, one of them with &szugtaM ■ 
Various other single axioms for the equivalence calculus are quoted (wi ou P , 
sufficiency) in the paper cited in footnote 256. However, the shortest sing e ax' . . 
the equivalence calculus, with rules of inference as in 26.0, are due o u ■ ’ 
one of them being the axiom given in 26.3(2) (see a review by Heinrich scno 
Zentralblatt /ur Mathematik und ihre Grenzgebiete. vol. 22 (1940). pp. 289-^wuj- 

M4In the paper cited in footnote 215. 
**‘In his mimeographed Elementy Logiki Matematyczncj. Warsaw \u iver. 
*ME.g., in Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univer 

sitdt. vol. 6 (1928), pp. 65-85. _. _r_ i„ place of the shorter 
f#7Hilbert and Bernays use the axiom pz^qZD .p p r p- P f F. shorter axiom, 

axiom pzz.qzzpq. They mention the obvious possibility o using the \^Qn3l ^ 

but point out that by doing so in the case of the formula ion ite 
cuius which they adopt primarily (and which is in some ^uld ^ destroyed. 
same as our system Ph) the independence of the axio P 'J formulation Ph' of 
In his Logical Calculus (1935-1936). p. 44, Bemays i jaw Qf reductio ad 
the propositional calculus which differs from Ph only in g converse law of 
absurdum and the law of double negation as axioms in p ace of toe con ^ 
contraposition. The independence of p =3 .?=>/> as an axiom of PU was 
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By omitting from PH negation and the one axiom containing negation, 

there is obtained a formulation Pp of what Hilbert and Bemays call "posi¬ 

tive Logik," or positive propositional calculus. This is intended to be that part 

of the propositional calculus which is in some sense independent of the existence 

of a negation (e.g., Peirce’s law is not a theorem of it). By omitting all con¬ 

nectives other than implication, and the axioms containing them, there is 

obtained a formulation P+ of the positive implicational propositional calculus. 

Such a system as PH has also the advantage (indicated by Hilbert and 

Bemays) of exhibiting in very convenient form the relationship between 

the full propositional calculus and the intuitionistic propositional calculus. 

Namely, the systems P's and P^of §26 are obtained by adding to Pp negation 

and appropriate axioms containing negation, or in other words by altering 

only the negation axioms of PH. The formulation P's of the intuitionistic 

propositional calculus is due to Heinrich Scholz and Karl Schroter.258 The 

formulation P‘w of the intuitionistic propositional calculus (employing / 

as primitive instead of negation, and adding the axiom / => p to Pp) was 

given by Wajsberg,2®9 but a similar observation regarding the possibility of 

using / in place of negation in formulating the intuitionistic propositional 

calculus had been made also by Gerhard Gentzen.270 

The formulation Pr (26.14) of the full propositional calculus may be cred¬ 

ited to V. Glivenko on the basis of his remark that a formulation of the full 

propositional calculus is obtained from a formulation of the intuitionistic 

propositional calculus by adjoining only the law of excluded middle as an 

additional axiom.271 

Many other formulations of the propositional calculus and partial systems 

of propositional calculus are found in the literature. We mention in this sec¬ 

tion only those which we have actually used in text or exercises, or which 

seem to have some outstanding interest or historical importance. 

The truth-table decision procedure for the propositional calculus (cf. §16) 

is applied in an informal way to special cases by Frege in his Begriffsschrift 

ma°vVCtin i6ta8Al^h^KndepCndenCe axi°m °f P»' <a question left open by Bernays) 

the tSriZ!? reSU. tS tnd rfmarks in connection PH and related systems, including 
and f I^Phcational proposit.onal calculus, the positive propositional calculus8 

vofume of mibTrtand pr°pOS,t\on£1 “Jjulus, are in Supplement III of the second 
“l bert and Bemays s Grundlagen der Mathematik. 

M»Ine?h!^ by Yajsberg in the ***** cited in footnote 211. In the paper cited in footnote 211. 
,70Sce Mathetnatische Zeitschri/t. vol. 39, p. 189 

series 5 vol *'¥?*• ?ull“'ns de la Classe des Sciences. 

theorems of 20.15, ( h C°ntamS ^ “itS princiPal result- tfae meta- 
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of 1879 (in connection with implication and negation as primitive connec¬ 

tives). The first statement of it as a general decision procedure is six years 

later by Peirce*7* (in connection with implication and non-implication as 

primitive connectives). Much of the recent development of the method 

stems from its use by Lukasiewicz*73 and by Post.*74 The term tautology is 

taken from Wittgenstein.*75 

Using three truth-values instead of two, and truth-tables in these three truth- 

values, Lukasiewicz first introduced a three-valued propositional calculus (cf. 

§19) in 1920.174 He was led to this by ideas about modality, according to which 

a third truth-value—possibility, or better, contingency—has to be considered 

in addition to truth and falsehood; but the abstract importance of the new 

calculus transcends that of any particular associated ideas of this kind. Gen¬ 

eralization to a many-valued propositional calculus, with v + 1 truth-values 

of which /x + 1 are designated (1 ^ /x < v). was made by Post in 1921,*" 

independently of Lukasiewicz, and from a purely abstract point of view. After¬ 

wards, but independently of Post, Lukasiewicz generalized his three-valued 

propositional calculus to obtain higher many-valued propositional calculi; this 

was in 1922, according to his statement, but was not published until 1929 and 

1930.m Lukasiewicz's calculi differ from those of Post in that there is just one 

designated truth-value, and also in not being full (i.e., not every possible truth- 

function, in terms of the v truth-values, is represented by a form of which it is 

an associated function). When, however, Lukasiewicz’s many-valued proposi¬ 

tional calculi are extended to full many-valued propositional calculi by the 

method of Slupecki,*7* they become special cases of those of Post. 

A primitive basis (especially axioms and rules of inference) for Lukasiewicz s 

three-valued propositional calculus, so that it becomes a logistic system, was 

provided by Wajsberg;**0 and Lukasiewicz and Tarski assert that this may also 

,J,In his paper cited in footnote 67, pp. 190-192 (or Collected Papers, vol. 3, pp 

223-226). . . 
,7*Jan Lukasiewicz in Przeglqd Filozoficzny, vol. 23 (1921), pp. 189-206. an i 

later publications. ... 
,7<E. L. Post in the American Journal of Mathematics, vol. 43 (1921), pp. I • 
«»Ludwig Wittgenstein, "Logisch-philosophische Abhandlung” in Annatender 

philosophic, vol. 14 (1921), pp. 186-262; reprinted in book form, with English tran - 

lation in parallel, as Traclalus Logico-philosophicus. 
»*Ruch Filozoficzny, vol. 6 (1920), pp. 169-171. Lukasiewicz s truth-taMe lor 

appears in exercise 19.8, where a three-valued propositional calculus close y 

to that of Lukasiewicz is described. .. i.. , I00ft 
*”In the paper cited in footnote 274, which is Post's dissertation of JM0. 
I7#ln the publications cited in footnotes 243. 265, and in Lukasiewicz P' 

Bernerkungen zu mehrwertigen Systemen des Aussagenhalkiils. which immediately follows 

(in the same periodical) the paper of footnote 243. et des 

l7»Jerzy Slupecki in Comptes Rendus des fiances de ? S<?C\2 11039) PP- 102-128. 
Lettres de Varsovie, Classe III, vol. 29 (1936), PP and 0 • ( Varsovie. 

**°In the Comptes Rendus des Stances de la SociiUdes Sciencese[de^et‘ finference 
Classe III, vol. 24 (1931), pp. 126-148. Another system of axioms andru recenUy by 
for Lukasiewicz’s three-valued propositional calculus has p 5J-68. 
Alan Rose in The Journal of the London Mathematical Society, vol. 26 (196 ), pp 



§29] HISTORICAL NOTES 163 

be done for all the Lukasiewicz finitely many-valued propositional calculi. For 

full finitely many-valued propositional calculi primitive bases have been given 

by Shipecki.*7* And more recently the question of primitive bases for finitely 

many-valued propositional calculi (and functional calculi) has been treated by 

J. B. Rosser and A. R. Turquette in a series of papers in The Journal of Symbolic 

Logic. Lukasiewicz introduced also an infinitely many-valued propositional 

calculus, but the question of a primitive basis for this seems to be still open. 

For the purpose of proving independence of the axioms of the proposi¬ 

tional calculus, the use of many-valued truth-tables (with one or more 

designated values) was introduced by Bemays in his Habilitationsschrift of 

1918, but not published until 1926.281 This idea was also discovered indepen¬ 

dently by Lukasiewicz but not published. The remark that the method can 

be extended to rules of inference was made by Huntington.282 The method 

employed in §19 of proving independence of the rule of substitution is due 

to Bemays (who suggested it to the writer in 1936). 

The independence results of 26.11 and the three-valued truth-table used 

to obtain them are due to Hey ting.283 The result of 26.12, and the many¬ 

valued truth-tables of 26.10 (except in the cases v = 1,2) are Godel’s.284 

Proofs of consistency and completeness of the propositional calculus, 

based on the truth-table method, were first made by Post.285 Since then, a 

number of different proofs of completeness of the propositional calculus have 

been published, of which we mention here only those by Kalmar28® and 

Quine.287 Quine makes use of the particular formulation Pw of the propo¬ 

sitional calculus, with implication and / as primitive connectives. The for¬ 

mulation Px of the propositional calculus, due to Wajsberg,288 combines 

some of the features of P2 and Pw: and the method by which we proved the 

completeness of Px in Chapter I is an adaptation to this case of the method 

‘In the Mathematische Zeilschrift. vol. 25 (1926), pp. 305-320. 

ti»TuViHuntmgt0n inthe Annals of Mathematics, ser. 2 vol. 36 (1935), pp. 313-324. 
*”The first two of the independence results of 26.11 are proved in his paper of 1930, 

cited in footnote 209. All of them follow immediately by the same method, whether for 
it?l onP°al formulation of the intuitionistic propositional calculus or any other. 

An,'iS'?Z’ U 
***In the paper of footnote 274. 

22™243.Zl6 Kalm4r ‘n Acta Scienliarum Mathematical, vol. 7 no. 4 (1935), pp. 

pC8 >•pp 3M0- Rrfcr'nces - -*« 
a paper in Wtadomoici Matemaiyczne. vol. 47 (1939), pp. 119-139 The idea of 

5 tht3 formu,ation of the propisftional calculus w^ sug- 
nS Or0! forThe y ? He,nkj? “ yie,din8 Perhaps the briefest available completl 

°° mdep*ndent Ld~ 
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of Kalmar. Especially the method of the proof of *152 (which is a necessary 

preliminary to the proof of completeness in §18), the idea of using *151 as 

a lemma for *152, and the method of the proof of *151, are taken from 

Kalmar with obvious adaptations. 

For the implicational propositional calculus, a completeness proof was 

published by Wajsberg289 (an earlier completeness proof by Tarski seems not 

to have been published). The method which was suggested in 18.3 for a 

completeness proof for the implicational propositional calculus follows 

Kalmar286 in general plan; but the idea of using a propositional variable in 

place of / is taken from Wajsberg,289 and the crucial idea of taking B' to be 

B z> r Z) r (rather than B) when the value of B is t, together with correspond¬ 

ing changes at various places in proving analogues of *151 and *152, was 

communicated to the writer by Leon Henkin in July 1948. 

The proof of equivalence of P2 to Px in §23 follows in large part a 

proof used by Wajsberg289 for a similar purpose. 

The deduction theorem (§13) is not a peculiarity of the propositional cal¬ 

culus but has analogues for many other logistic systems (in particular for 

functional calculi of first and higher orders, as we shall see in the chapters 

following). The idea of the deduction theorem and the first proof of it for 

a particular system must be credited to Jacques Herbrand.290 Its formulation 

as a general methodological principle for logistic systems is due to Tarski.291 

The name "deduction theorem” is taken from the German “Deduktions- 

theorem” of Hilbert and Bemays.292 

The idea of using the deduction theorem as a primitive rule of inference in 

formulations of the propositional calculus or functional calculus is due in¬ 

dependently to Jankowski293 and Gentzen.294 Such a primitive rule of infer¬ 

ence has a less elementary character than is otherwise usual (cf. footnote 

181), and indeed it would not be admissible for a logistic system according 

*6,In the paper cited in footnote 269. ,.. 
tH>A modified form of the deduction theorem, adapted to a special formu a on 

functional calculus of first order, was stated by him, without proof, in an a s c 1 

Comptes Rendus des Stances de V Acadimie des Sciences (Paris), vo . \ / nai 
p. 1275. The deduction theorem was stated and proved, for a system hke the fu 

calculus of order a>, in his Paris dissertation, Recherches sur la T ?rte- . . (jes 
sir at ion, published in 1930 as no. 33 of the Travaux de la Sociiti des Sc'e . , 
Letlres de Varsovie, see pp. 61-62. In proving the deduction theorem, in Chapter 
again in Chapter III, we employ what is substantially Herbrand s ^ /fl 

"‘It is stated by him in this way in a paper in the ComfitesAxiom 8. 
Sociiti des Sciences et des Leltres de Varsovie. Classe III, vol. 23 (1930) 

OQ p. 24. . fv _ Qft7 

ntGrunilagen der Mathematik, vol. 1, p. 155, and vol. 2, p. • .034 

*»JStanislaw Jankowski, On the Rules o/ Su^osihons «« ? ■ ially 
*»*In the Malhematische Zeitschrift. vol. 39 (1934), pp. 176-210, 40<M31. see espec 

II. Abschnitt, pp. 183-190. 
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to the definition as we actually gave it in §07. But this disadvantage may be 

thought to be partly offset by a certain naturalness of the method; indeed 

to take the deduction theorem as a primitive rule is just to recognize formally 

the usual informal procedure (common especially in mathematical reasoning) 

of proving an implication by making an assumption and drawing a conclusion. 

Employment of the deduction theorem as primitive or derived rule must 

not, however, be confused with the use of Sequenzen by Gentzen*95 (cf. 

39.10-39.12 below). For Gentzen’s arrow, —is not comparable to our 

syntactical notation, h, but belongs to his object language (as is clear from 

the fact that expressions containing it appear as premisses and conclusions 

in applications of his rules of inference). And in fact we might well have 

introduced Sequenzen in connection with P, by means of the following 

definition schemata:*98 

Aj ■ A2 3 •.. t An n> /, 
Aj, Ag, Bi, B2, ..Bm 

-*■ Aj d ■ A2 3 .... An ^ Bj v B2 v ... v Bm 

where n = 0, 1, 2, 3.and m = 1, 2, 3.and where in both cases the 

abbreviation is to be used only for an entire asserted wff (never for a wf 

proper part of such). Thus we would have obtained all the formal properties 

of Gentzen’s Sequenzen, and in particular would have been able to state the 

derived rules of 14.9 somewhat more conveniently. 

For the derived rules of 14.9 themselves (as an alternative to use of the 

deduction theorem) credit should be given to Frege, rules very similar in 

nature and purpose having been employed by him in the first volume of 

his Grundgesetze der Arithmetik (1893). 

The derived rule of substitutivity of equivalence (*159) and the related 

metatheorem of 16.2 were demonstrated for the propositional calculus— 

specifically, for PR—by Post.197 The related metatheorem *229 (where two 

implications take the place of an equivalence) was obtained for the implica- 

tional propositional calculus by Wajsberg.*98 

The full disjunctive normal form (24.9) may be traced back to Boole’s law 

“‘Ibid., III. Abschnitt, pp. 190-210. Gentzen's use of Sequeruen is taken in part 

,r°m™IHertz seeaPaPcr by Gentzen in the Malhemalische Annalen, vol. 107(1932) 
pp. 329-350, and references to Hertz which are there given. 

“‘Substantially the same equivalences as those which appear from these definition 
schemata are given by Gentzen in the paper just cited, p. 180 and p. 418. 

form1? the.paper c,ted *n f°°tnote 274. See also the discussion of truth-functions and 
(loTo) CqU,Valence m the introduction to the first volume of Princxpia Mathematics 

“•In the paper cited in footnote 259. 
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of development (28.1(5), (6)), and it is used on this basis by Schroder in 

Der Operationskreis des Logikkalkuls (1877). Both the full disjunctive normal 

form and its dual, the full conjunctive normal form, were given in 1880 by 

Peirce.299 Schroder and Peirce state the normal forms for the class calculus, 

but extension to the propositional calculus is immediate. 

The principle of duality is to be credited to Schroder, who gives it for the 

class calculus in his Operationskreis, just cited, and again in his Algebra der 

Logik. Schroder does not extend the principle of duality to the propositional 

calculus, but such extension is immediate and seems to have been assumed 

by various later authors without special statement of it (e.g., by Whitehead, 

Couturat, Sheffer) Heinrich Behmann, in the paper cited in footnote 299, 

explicitly establishes the principle of duality in a form corresponding to 

*165 not only for the propositional calculus but also, in effect, for the func¬ 

tional calculi of first and second orders (where quantifiers are involved in 

addition to sentence connectives—see Chapters III—V below); and Hilbert 

and Ackermann in the first edition of their Grundziige der theoretischen Logik 

(1928) establish analogues of *164 and *165 for the propositional calculus 

and for the functional calculus of first order. However, a principle of duality 

in connection with quantifiers appears already in the third volume of 

Schroder’s Algebra der Logik. 

EXERCISES 29 

29.O. (1) Establish the completeness of Pr by proving as theorems the 

axioms of some formulation of the propositional calculus which has the 

same primitive connectives and the same rules of inference and is already 

known to be complete. (2) Discuss the independence of the axioms of Pr- 

29.I. (1) Establish the completeness of the partial system of propositional 

calculus PrK. (Compare 18.3.) (2) Discuss the independence of the axioms 

Of P{K 

*”In the American Journal of Mathematics, vol. 3 (1880), pp. 37 39 (or Collected 

Papers, vol. 3, pp. 133-134). . . . . . „fl22i OD 
Heinrich Behmann (in a paper in the Mathemalxsche Annalen. vol. 80 (M^h PP- 

163-229) gives the name "disjunktive Normalform” to a disjunction of terms 

which each term C, has the form of a conjunction of propositional variables 

gations of propositional variables; and the name "konjunktive Norma o 
dual of this. For the use of these normal forfns in the propositional calculus, Be 

refers to Bemays’s unpublished Habilitationsschrift of 1918. Vnniunktive 
The full conjunctive normal form corresponds to the ausgezeichnete , and 

Normalform” of Hilbert and Ackermann (in Grundziige der J*JHilbert 
is thus a special case of the "konjunktive Normalform of Bernays, ' Qi 
and Ackermann. And dually the full disjunctive normal form is a special 

disjunctive normal form. 
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29.2. Establish the completeness of P v by proving the following theorems 

of PA (in order) and then using the result of exercise 12.7: 

~P => q => [~q "=> q) => • P => ■ ~q => q 
~q ZD ~p ZD m P ZD m ~q ZD q 

~qZ3~pZD.~qZDqZDq=>.p-=>q 

P ZD . ~q => q ID q 

*ppp [p=>q) =>.-[/> =>?]=>-P =>? 

~q=>q=>q=> [/>=>?]=>.£=> <? 

q=> *P=>q 
~q ■=> ~p , p ■=> q 

~p=>.p=>q 

p=>qz>p=>p 

29.3. In the system PA, use the method of truth-tables to establish the 

independence of the three axioms and the rule of modus fonens. (Except in 

one case, that of the first axiom, a system of two truth-values is sufficient.) 

29.4. Use the result of 29.2 to establish the completeness of the system 

Pj of propositional calculus in which the primitive connectives and the 

rules of inference are the same as for PH (see §26) and the axioms are the 

nine following: 

pvq = .p=>qz>q 

pz*q=>.qv.p=>r 

p==q=>.p Z> q 

P=qv.qvp 

P=> .q = p = q 

P=> -pq = q 
P .q => .r Z> p 

p = ~pZ2 q 

pq=> P 

(This system—minimizing the length of the separate axioms rather than 

the number of axioms—is due to Stanislaw Jankowski, in Studia Societatis 

Scienliarum Torunetisis, vol. 1 no. 1 (1948).) 

29.5. Discuss the independence of the axioms of Pj. 



III. Functional Calculi of First Order 

The functional calculus of first order has or may have, in addition to no¬ 

tations of the propositional calculus, also individual variables, quantifiers 

with individual variables as operator variables (cf. §06), individual constants, 

functional variables, functional constants. 

Various different functional calculi of first order are distinguished accord¬ 

ing to just which of these notations are introduced. But the individual 

variables are always included, and either some functional variables or some 

functional constants. And one or more quantifiers are always included, 

either the universal quantifier or one or more quantifiers which are (when 

taken together, and in the presence of the other primitive notations) 

definilionally equivalent to the universal quantifier in the sense that they 

can be obtained from the universal quantifier, and the universal quan¬ 

tifier can be obtained from them, by abbreviative definitions (cf. §11, and 

footnote 168) which reproduce the requisite formal properties. Propositional 

variables are not necessarily included, but there must be a complete system 

of primitive connectives for the propositional calculus, or something from 

which such a complete system of sentence connectives can be obtained by 

abbreviative definitions so as to reproduce the requisite formal properties. 

In this chapter we study a particular formulation of each of the functional 

calculi of first order, the various formulations being in their development so 

nearly parallel to one another that they can be treated simultaneously with¬ 

out confusion or awkwardness. Where not necessary to distinguish the var¬ 

ious different functional calculi of first order we speak just of the func¬ 

tional calculus of first order," and the particular formulation of the func‘ 

tional calculus of first order studied in this chapter is then called F1. 

One of the functional calculi of first order is the pure functional calculus of 

first order (as explained in §30 below), and we call our formulation of it 

"Flp.” Thus "F1" is ambiguous among various logistic systems, one of which 

is Flp. 

In Chapter IV we shall consider further the pure 

first order, introducing, in particular, an alternative 

functional calculus of 

formulation of it, FgP. 
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30. The primitive basis of Fl. The primitive symbols of F1 are the 

eight improper symbols 

[=>]-(.) v 

and the infinite list of individual variables 

x y z xx yl zx x2 y2 z2 . . 

also some or all of the following, including either at least one of the infinite 

lists of functional variables or at least one functional constant:300 the infinite 

list of propositional variables 

p q r s px qx rx sx p2 ... 

and for each positive integer n an infinite list of n-ary functional variables, 

namely, the infinite list of singulary functional variables 

F1 G1 H1 F\ G\ H\ F\ ... 

and the infinite list of binary functional variables 

F2 Ga Hz F\ G\ H\ F2 ... 

and so on, further any number of individual constants, any number of sin¬ 

gulary functional constants, any number of binary functional constants, 

any number of ternary functional constants, and so on. We do not specify 

the particular symbols to be used as functional constants, but allow them 

to be introduced as required, subject to conditions (B) and (I) of §07 (as to 

(B), cf. also footnote 113). 

In the case of each category of variables, the order indicated for them is 

called their alphabetic order. 

The formation rules of F1 are: 

30i. A propositional variable standing alone is a wff.301 

30ii. If f is an n-ary functional variable or an n-ary functional constant, 

and if a,, a2, ..an are individual variables or individual constants 

or both (not necessarily all different), then f(alf a2.an) is a wff. 
30iii. If T is wf then ~r is wf. 

30iv. If T and A are wf then [T r> A] is wf. 

30v- T is wf and a is an individual variable then (Va)T is wf. 

e P th* t th,er.f ,°r n°,n? of the variables >n any one category be included, 
th® th* ent^e infinite list of binary functional variables or none of them. But 

h*in/rdlV'dUin °r fuoctlonal constants are present, their number may be finite, 
siti^ kf1 may be vacuous in the case of certain systems F‘, namely, if propo- 

have^rin^lf^r afC n°Viacloded among the primitive symbols. We might therefore 

ia wfT- n* adHPPH°HOS ?i<Variable StandiDg alone‘ if the systera F‘ contains 
actually nccessaryd (betWTOn commas) increases clearness, but is not otherwise 
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A formula of F1 is wf if and only if its being so follows from the formation 

rules. As in the case P, and P2 (see §§10, 20) there follows, for a particular 

given system F1, an effective test of well-formedness. The demonstration of 

this is left to the reader. 

The wf parts A and B of a wff [A zj B] are called the antecedent and 

consequent respectively, and the occurrence of z> between them is called the 

principal implication sign. That the antecedent and consequent and 

principal implication sign of any wff [A z> B] are unique is part of the 

metatheorem **312 of the next section, 

The converse of [A z> B] is the wff [B zd A] obtained by interchanging 

the antecedent and consequent. The converse of 

(Va1)(Vat)...(Va„)[A B] is (Val)(Vat) ... (Van)[B z> A]. 

The elementary parts of a wff are the parts which are wf according to 30i 

or 30ii, i.e., they are those wf parts which have either the form of a prop¬ 

ositional variable alone or the form f(a,, a2, ..., a„) where f is an n-ary 

functional variable or constant and alf a2, . . ., an are individual variables 

or constants. 

An occurrence of a variable a in a wff A is called a bound occurrence of a 

in A if it is an occurrence in a wf part of A of the form (Va)B; otherwise it 

is called a free occurrence of a in A. The bound variables of A are the variables 

which have bound occurrences in A; and the free variables of A are those 

which have free occurrences in A.302 

From the definition of a wff of F1 it follows that all occurrences of prop¬ 

ositional and functional variables are free occurrences. But an occurrence 

of an individual variable in a wff of F1 may be either free or bound. 

A wff is an n-ary form if it has exactly n different free variables, a constant 

if it has no free variables. In F1, all forms are propositional forms, and all 

constants (wffs) are propositional constants or sentences. (Cf. note 117.) 

In addition to the syntactical notations, 

S?A|, S^-r. Al, 

explained in §§10, 12, we shall use also the syntactical notation 

for the result of substituting T for all free occurrences of b in A, and 

SS>frJ"A| 

for the result of substituting simultaneously T, for all free occurrences of 

^Compare the first four paragraphs of §00, and footnotes 28, 36, 96. 
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bj, Ti for all free occurrences of b,.T„ for all free occurrences of bn. 
throughout A (the dot indicating substitution for free occurrences only). 

In writing wffs of F1 we make use of the same abbreviations by omission 

of brackets that were explained in §11, including the same conventions 

about association to the left and about the use of heavy dots. We also ab¬ 

breviate by omitting superscripts on functional variables—writing, e.g., F(x) 

instead of F1 (z), and F (z, y) instead of F* (z, y)—since the superscript required 

to make the formula wf can always be supplied in only one way (cf. 30ii). 

Also we adopt for use in connection with F1 the definition schemata 

D3-12, understanding the "•»” which appears in them to be the primitive 

symbol - of F1. However, the brackets which appear as part of the notation 

[A, B, C] introduced by D12 must (unlike other brackets) never be omitted. 

And we add further the following definition schemata, in which a, aj. 

flj, ... must be individual variables: 

D13.803 (a)A -► (Va)A 

D14.304 (3a)A -* ~(a)~A 

D15.»» [A 3^. B] - (a,) (a,) ... (an) . A zd B n = 1, 2. 3,. . . 

D16.806 [A B] -+ (a,)(aa) ... (an) . A = B n = 1, 2, 3,. . . 
D17. [A L B] -(a).A|B 

In abbreviating wffs by omission of brackets, we use (as already stated) 

the convention of association to the left of §11. This convention is modified 

in the same way as in §11 by dividing bracket-pairs into categories, the 

same division into categories being used as before with the following ad¬ 

ditions: (1) when one of the signs zd, = , | is used with subscripts (according 

to D15-17), the bracket-pair that belongs with it is considered in the same 

category as if there were no subscripts; (2) the combinations of symbols 

(Va), (a), (3a) (simple quantifiers with operator variable) are placed along 

with the sign ~, in a fourth and lowest category, in the same sense as already 

explained in §11 for 

In stating the rules of inference and the axiom schemata of F1, we make 

use (for convenience) of the definition schemata and other conventions of 

abbreviation which have just been described. 

**I.e., in writing wffs we may as an abbreviation simply omit the symbol V 
Compare the discussion of the universal quantifier in §06. 

•^Compare the discussion of the existential quantifier in §00. 

"Compare the discussion of formal implication and formal equivalence in §00. 
The purely abbreviative definition schemata, D15 and D10, are to be distinguished 

Zi^ionmadC ? §06 ThC lattCr Provide definUio^XS 
aoolv iS ? cquivalen1_ce 5ather ,n (2> of footnote 108, and they must 
apply to object languages in which the notations in question are truly present. 
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The rules of inference are the two following: 

*300. From Ad B and A to infer B. (Rule of modus ponens.) 

*301. From A, if a is an individual variable, to infer (a)A. 

(Rule of generalization.) 

In an application of the rule of modus ponens, we call A id B the major 

premiss, and A the minor premiss. In an application of the rule of generali¬ 

zation, we say that the variable a has been generalized upon. 

The axioms of F1 are infinite in number, and are represented by means of 

five axiom schemata in the manner described in §27. These axiom schemata 

are as follows: 

*302. Ad.BdA 

*303. Aid [BdC]d,AdBd.AdC 

*304. -Ad.Bd.BdA 

*305. A ua B . A id (a)B, where a is any individual variable which is 

not a free variable of A. 

*306. (a)A id $£A], where a is an individual variable, b is an individual 

variable or an individual constant, and no free occurrence of a in 

A is in a wf part of A of the form (b)C. 

In *305 and *306, we here meet for the first time with axiom schemata 

which, unlike those introduced in §27, have conditions attached to them 

(stated in the syntax language). For example, according to *305, not every 

wff A zda B zd . A 3 (a) B is an axiom, but only those wffs of this form which 

satisfy the further condition that A contains no free occurrence of a. 

The intention of *305 and *306 may be made clearer by giving some 

examples, for the sake of which we suppose that the propositional variables 

and the singulary and binary functional variables are included among the 

primitive symbols of F1. 

Thus one of the wffs which is an axiom according to *305 is*04 

pz>xF(x)=> ,pz> (x)F(x). 

or. as we may write it if we do not use the abbreviation of D15, 

(*)[/> d /?(*)]=> ./>=> (x)F(x). 

(This may be called a basic instance of *305, in the sense that all other m- 

“*In this example, A is the wff p, a is the individual variable z, and Bis the »(( F( ) 
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stances of *305 may be obtained from it by means of rules of substitution 

to be discussed in §35, and that no shorter instance of *305 has this property.) 

Again the wff 
G(x)3wff(y)3.G(x)3 (y)H(y) 

is an axiom, an instance of *305 (though not a basic instance). And also 

an axiom by *305 is 

F(x) 3„ [G(y. z) 3, H{z)] 3 . F(x) => . G(y, z) H(z), 

and so on, an infinite number of axioms altogether. But the following wff 

is not an instance of *305 and not an axiom: 

F(x) =>x G(x) 3 . F(x) 3 (x)G(x) 

Some wffs which are instances of *306 and therefore axioms are the follow¬ 

ing (the first two are basic instances):307 

(x)F(x) 3 F(y) 

(x)F(x) 3 F(x) 

F[x) =>x (y)G(y) 3 . F(y) 3 (y)G(y) 

Fix) 3, (x)G(x) 3 . F(y) 3 (x)G(x) 

y) 3, (z)G(x, z) 3 . F(y, y) 3 (z)G(y, z) 

On the other hand the following wffs are not instances of *306 and not 

axioms:308 

(x)(y)F(x, y) 3 (y)F(y.y) 

F(x) 3r (y)G(x, y) 3 . F(y) 3 (y)G(y, y) 

As we did in connection with formulations of the propositional calculus, 

we shall place the sign h before a wff to express that it is a theorem. 

Among the various functional calculi of first order, F1, whose primitive 

bases have now been stated, we distinguish certain ones by special names 

as follows. The pure functional calculus of first order, F1p, is that in which the 

primitive symbols include all the propositional variables and all the func¬ 

tional variables (singulary, binary, ternary, etc.), but no individual constants 

and no functional constants. The singulary functional calculus of first order, 

Fw. is that in which the primitive symbols include all the propositional 

variables and all the singulary functional variables, but no other functional 

variables, no individual constants, and no functional constants; if to these 

.. *"T° sUtf <luite explicitly how these five wffs are instances of *306, we have, takine 
cm in order: m the first one, A is F(x). a is x. b is y; in the second one, A is F(ar), 

A ta °Dk A U F{X) = aisx-b is V- in fourth one. 

and b is ^ (X,‘ 8 13 b 13 y; m the ,ast one' A is F^x‘ 9) => (^)G(*. ')• a is *, 

•“The first one of the two is, however, a theorem, as we shall see later (exercise 34.3). 
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primitive symbols we add the binary functional variables we have the binary 

functional calculus of first order, F-*; and so on. A functional calculus of 

first order in which the primitive symbols include individual constants or 

functional constants or both is an applied functional calculus of first order; 

if no propositional variables and no functional variables are included, it is a 

simple applied functional calculus of first order (in this case there must be 

at least one functional constant). 

This terminology will be useful to us later. But in this chapter we shall 

often not need to distinguish different functional calculi of first order by 

name, because, as already explained, we treat the various functional calculi 

of first order simultaneously by giving a development which holds equally 

for any one or all of them. 

The intended principal interpretations of the functional calculi of first order 
may be roughly indicated by saying that propositional variables and sentence 
connectives are to have the same meaning as in the propositional calculus, the 

universal quantifier, (V ), is to have the meaning described in §06, and the func¬ 
tional variables are to have propositional functions of individuals as values 
(e.g., the range of a singulary functional variable is the singulary functions from 
individuals to truth-values, and similarly for binary functional variables, etc.). 
For application of a function to its argument or arguments the notation described 
in §03 is used. For the individuals, i.e., the range of the individual variables, 
various choices may be made, so that various different principal interpretations 
result. Indeed if no individual or functional constants are among the primitive 
symbols, it is usual to allow the individuals to be any well-defined non-empty 
class.*0* But if there are individual or functional constants, the intended inter¬ 
pretation of these may lead to restrictions upon or a special choice of the class 
of individuals. 

We illustrate by stating the semantical rules explicitly in two cases, namely 
that of the pure functional calculus of first order, F1P, and that of a simple 
applied functional calculus of first order, Flb, which has two ternary functional 
constants, E and 77, and no other functional constants or individual constants 

among its primitive symbols. 

In the case of Flp, some non-empty class must first be chosen as the individuals, 

and there is then one principal interpretation, as follows: 

a. The individual variables are variables having the individuals as their 

range.*10 

*°*The term "individual” was introduced by Russell in connection with the theory 
of types, to be discussed below in Chapter VI. A rather special meaning was given ^ 
the term by Russell, the individuals being described as things "destitute of comp 
(Russell, 1908) or as objects which "are neither propositions nor functions (Whiteneau 
and Russell. 1910). But in the light of Russell's recognition that only relative types* 
actually relevant in any context, it is now usual to employ individual in y 
described in the text. Cf. Carnap, Abriss der Logislik (1929), p. 19. 



§30] PRIMITIVE BASIS 175 

b0. The propositional variables are variables having the range t and f. 

b,. The singulary functional variables are variables having as their range the 

singulary (propositional) functions from individuals to truth-values.*10 

b,. The binary functional variables are variables having as their range the 

binary propositional functions whose range is the ordered pairs of individuals.*10 

b,. The n-ary functional variables are variables having as their range the 

n-ary propositional functions whose range is the ordered n-tuples of individuals.*10 

c0. A wff consisting of a propositional variable a standing alone has the 

value t for the value t of a. and the value f for the value f of a. 
c„. Let f(a„ a„ . . .. a.) be a wff in which f is an n-ary functional variable, 

and at, a,.a. are individual variables, not necessarily all different. Let 

b,, b,.b„ be the complete list of different individual variables among 

a, , a„ . . . , a.. Consider a system of values, b of f, and 6„ b.. bm of 

b, , b.b„; and let a,, a.. a. be the values which are thus given to 

a„ a,.a. in order. Then the value of f(a,. a,, . . . , a.) for the system of 

values b, 6„ bt.bm of f. b,. b.. b„ (in that order) is 6(a„ a„ . . . , a.).*11 

d. For a given system of values of the free variables of ~A, the value of ~A 
is f if the value of A is t; and the value of —A is t if the value of A is f.*1* 

e. For a given system of values of the free variables of [A Z3 B], the value of 

[A 13 B] is t if either the value of B is t or the value of A is f; and the value of 

[A =3 B] is f if the value of B is f and at the same time the value of A is t. 

f. Let a be an individual variable and let A be any wff. For a given system 

of values of the free variables of (Va)A, the value of (Va)A is t if the value of A 
is t for every value of a; and the value of (Va)A is f if the value of A is f for at 
least one value of a.*1* 

*l0Since the individual and functional variables have values as variables, it might 
therefore be thought more natural to consider them wffs when standing alone and to 

provide semantical rules giving them values as forms (as rule c0 does in the case of the 
propositional variables). Also a similar remark might be thought to apply to individual 

and functional constants in an applied functional calculus of first order. For the logistic 
system of Chapter X we shall indeed follow this idea. But for the functional calculi of 

first hand higher) order it is practically more convenient not to call a formula wf which 
consists of an individual or functional variable or an individual or functional constant 

standing alone. In adopting this terminology for the functional calculi, we shall never¬ 
theless regard the individual and functional variables and the individual and functional 
constants as proper symbols (cf. footnote 80) and as having meaning in isolation. And 
in particular we shall speak of the individual and functional constants as having deno¬ 
tations—which are given by the semantical rules. 

*,1The same notation for application of a function to its arguments that we have intro- 

* obJecti)an§uage >s here used also in the meta-language. We shall follow 
this practice generally, not considering it a violation of the next-to-last paragraph of 

a rare “ which this ^gb* lead to ambiguity in connection with autonymy, 

in* m»r^eJTe **** possib,1,ty ol an appropriate circumlocution to render the mean- 

du«7i!fsK» SlJPTr?.0?8 are t°,be “nderstood according to the conventions (intro- 

vIm of fI,! V(,l) haVC a Value fOF a nul1 class of variables is to denote; (2) the 
S^Lnt S th^W anyfSySte,m of vaIues of “y variables is the denotation of the 

, 3 T “y Sy!tCm °f VjUues of flny var'<*les which include 
the e vlhu' ai ,VaIue °f 1116 form for 1116 given values of 

mVnJ.K J , h f,0rm (values of other variables being ignored). 

with‘the cfnventihn? ? following special cases of rule f and rJTe C. in accordance 
with the conventions referred to in footnote 312. If A contains the individual variable 
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For convenience of reference we have here indicated an infinite list of rules 

b0' bi» b*< • • • and an infinite list of rules c0, c,, ct, . . .. These may, however, be 

condensed in statement into just two rules, b and c.*11 

In the case of Flh, the individuals shall be the natural numbers, i.e., the positive 

integers and 0. There is one principal interpretation, as follows: 

a0. The individual variables are variables having a non-empty range O'. 

а, . The range 0 of the individual variables is the natural numbers. 

ft- Each of E and 77 denotes a ternary propositional function of the 
members of 0. 

ft- E denotes the ternary propositional function of natural numbers whose 

value, for any natural numbers a„ a„ at as arguments (in that order), is tor f 

according as a, is or is not the sum of a, and a,. 

ft. 77 denotes the ternary propositional function of natural numbers whose 

value, for any natural numbers a„ a„ a, as arguments (in that order), is t or f 

according as a, is or is not the product of a, and a,. 

y. Let f be a ternary functional constant denoting the propositional function 

b, and let a„ a,, a, be individual variables, not necessarily all different. Then 

the value of f(a„ a„ a,) for a system of values of the individual variables is 

b(a,, a,, a,), where a,, a,, a, are the respective values of a„ at, a,. 
б. Identical in wording to rule d above. 

e. Identical in wording to rule e above. 

f. Identical in wording to rule f above.*1* 

EXERCISES 30 

30.0. Express the following proposition by a wf of F,h (taking the principal 
interpretation of Flh): For all natural numbers a, b, c, if a + b = c, then b + a=c. 

30.1• Similarly, express in F,h: For all natural numbers a, b, either a £b 
or b ^ a. (An abbreviative definition should first be introduced to represent the 
relation say [a ^ b] -* (3c)2;(a, c, b) where a and b are any individual 

variables and c is the first individual variable in alphabetic order which is not 

the same as either a or b.) 

a as its sole free variable, then (Va) A denotes t if the value of A is t for evety va^u® 
and (Va)A denotes f if the value of A is f for at least one value of a. If A does not con¬ 

tain the individual variable a as a free variable, the value of (Va)A is the sa 

value of A, for any system of values of the free variables. If A contains no reev 

and if a is any individual variable, (Va)A has the same denotation^ as • 

*14I.e., in an appropriate semantical meta-language the two infini e 1 mentto 

be reduced to two rules, as described. It is beyond the scope of °Vr preJ*e?H ^ necessary 
undertake the detailed formalization (of the meta-language) whic w0 ^ 

to answer the question, what is an appropriate semantical S,at 

pose. We remark, however, using a terminology to be explained 1 bLed on an 
such a semantical meta-language might with the aid of certain a 1 nstants being 

applied functional calculus of sufficiently high (finite) order, unc: 1 . (postu- 
introduced to represent certain syntactical and semantical notions and axioms 

lates) added concerning them. 
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3O.2. Similarly, express in F*h: if two natural numbers have a product equal 

to 0, then one of them is equal to 0. (A notation, say Z0(a), should first be intro¬ 

duced by abbreviative definition to represent the propositional function, equality 

to 0. Use may then be made of the wff (3z) . 77(x, y, z)Z0(z) to express that two 

natural numbers [values of z and y] have a product equal to 0.) 

30.3* Similarly, find in F** wffs expressing as nearly as possible each of the 

following: (1) A natural number remains the same if it is multiplied by 1. 

(2) The sum of two odd numbers is an even number. (3) For every prime number 

there exists a greater prime number; (4) The one and only even prime number is 

2. (6) For all natural numbers a, b, and all natural numbers c except 0, if ac ^ be, 

then a ^ b: (6) For all natural numbers a, b, (a + b)* = (a* + bl) + 2ab. 

3O.4. Consider an applied functional calculus of first order, F>\ which has the 

functional constants 27 and 77, with the same meaning as in F‘*>, and in addition 

has all propositional and functional variables. The principal interpretation may 

be taken as obvious by analogy with those given for F‘p and Flfc, the individuals 

being again the natural numbers. In this functional calculus of first order, 

express as nearly as possible, by means of a wff containing free functional varia¬ 

bles, each of the following assertions: (1) In any non-empty class of natural 

numbers there is a least number.*1* (2) If a non-empty class of natural numbers 

contains no greatest natural number, then for any given natural number it 

contains a greater natural number. (3) The relation between natural numbers 

is characterized by the three conditions;*1* that it holds between 0 and every 

natural number; that it does not hold between any natural number other than 

0 and 0; and that (for all natural numbers a and b) it holds between a + 1 and 

b + 1 if and only if it holds between a and b. (4) For every natural number k, the 

sum of the odd numbers less than 2k is A1. (Suggestion: Given a class C of natural 

numbers, the relation between a natural number k and the sum of the natural 

numbers of C which are less than k is characterized by the three conditions: that 

it holds between 0 and 0; that it does not hold between 0 and any natural number 

other than 0; and that, for all natural numbers a and b, it holds between a -f 1 

and 6 if and only if there is a natural number c such that it holds between a and 

c. and b is equal to c + a or c according as a does or does not belong to C.) 
(6) Perfect numbers exist.*17 

3°*S* Taking the individuals to be the odd perfect numbers,*17 let an inter¬ 

pretation of F»p be given by the same semantical rules a-f as for a principal 

interpretation. (1) If there are odd perfect numbers, the interpretation is a 

** h>rP°thesis' show that the interpretation is 
sound (2) On the hypothesis that there are no odd perfect numbers, show that 
the interpretation is unsound. (On the latter hypothesis, observe that a wff 
containing free individual variables must be said to have the value t for all 

Jett?11 that' aCC°rdiDg to §°4' a CUSS is the thing as a singulary propositional 

onjy^ “ QatUral DUmberS U thC relatiOD * if and 

its °',Which is ^ual to sum of 
exactly dhS '* Qatural numbers Iess than itself by which it is 
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systems of values of its free variables, and also to have the value f for all systems 
of values of its free variables; but it must not be said that it has the value f for 
at least one system of values of its free variables.) 

30.6. The operator, or quantifier, which is introduced by abbreviative def¬ 
inition in D17 may of course also be used as a primitive (singulary-binary) 
quantifier in a formulation of the functional calculus of first order. For a formu¬ 
lation of the pure functional calculus of first order in which this is the only 

primitive sentence connective or quantifier, state the formation rules; state the 
semantical rules for a principal interpretation; and supply definitions of the 
universal quantifier, implication, and negation which will provide the appro¬ 
priate agreement in meaning of the kind explained in the semantical paragraphs 
at the end of §11. 

30.7* The intended principal interpretation of the extended propositional cal¬ 

culus (in the sense of §28) is informally indicated by the semantical discussion 
in §§04-06, 28. For a formulation of the extended propositional calculus in which 

implication is the one primitive sentence connective, and the universal quantifier 
is the one primitive quantifier, state the formation rules; and state the semanti¬ 
cal rules for the principal interpretation. 

30.8. The intended principal interpretation of protothetic (in the sense of §28) 
is informally indicated by the semantical discussion in §§04-06, 28. For a for¬ 
mulation of protothetic in which equivalence is the one primitive sentence 
connective, and the universal quantifier is the one primitive quantifier (which 
takes, however, either a propositional variable or a truth-functional variable as 

operator variable), state the formation rules; state the semantical rules for the 
principal interpretation; and supply definitions of implication and negation 
which will provide the appropriate agreement in meaning. 

31. Propositional calculus. If the primitive symbols of F1 include 

the propositional variables, then every theorem of the propositional calculus, 

in implication and negation as primitive connectives, is a theorem also of 

F1—as follows immediately from the results of §27, because the axioms of 

the system P of §27 are included among the axioms of F1 (in *302, *303, and 

*304) and the one rule of inference of P is a rule of inference also of F1. 

Even if the propositional variables are not included among the primitive 

symbols of F1, we may draw a similar conclusion regarding substitution 

instances of theorems of the propositional calculus. 

By a substitution instance of a wff A of any formulation of the propositional 

calculus we mean, namely, an expression or formula 

bjbj-.b* A|. 

where b„ b2.b„ is the complete list of (distinct) propositional vari¬ 

ables of A, and Bj, B„ ..., Bn are any wffs of the logistic system uner 

consideration in the particular context, in this chapter, the logistic system • 
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It is clear, then, that a substitution instance of a wff of P is a wff of F1. 

Moreover, a substitution instance 

SSfcfc A| 

of a theorem A of P must be a theorem of F1. For every substitution instance 

of an axiom of P is an axiom of F1 (by *302-*304). And if a proof is given of 

A as a theorem of P, let bj, ba, ..., bn. c1( ca,.. c*, be the complete list 

of (distinct) propositional variables occurring, choose arbitrary wffs 

Cj, C,...., C™ of F1, and substitute simultaneously Bj for bx, B, for ba, .. 

B„ for b,,, Cj for Cj, Ca for ca, .... C,,, for ^ throughout the given proof. 

The result of this substitution is a proof of 

as a theorem of FJ—valid applications of the rule of modus potions in P 

being transformed by the substitution into valid applications of the rule of 

modus potions in F1. 

Since we know (by **235, *239, *270, **271) that the theorems of P are 

the same as the tautologies of P (in the sense of §15), we may, without loss, 

put the foregoing results in the following form: 

*310. Every tautology of P is theorem of Fl if it is a wff of F1. 

*311. Every substitution instance of a tautology of P is a theorem of F1. 

In the foregoing, the arbitrary choice of the wffs Cj, Ca,..., C„, is easily 

replaced by a definite rule for their choice. For example, since n > 0, we 

might just make each of the wffs C^, Ca.C„ identical with Bj. Thus the 

proof of *311 becomes effective, in the sense of §12, so that *311 (as well as 

*310) may be employed as a derived rule of inference. 

The use of *311 as a derived rule is facilitated by the fact that there is an 

effective procedure to determine whether a given wff of Fl is or is not a 

substitution instance of a tautology of P—and to find a tautology of P of 

which it is a substitution instance, in case there is one. Details of this are 

now left to the reader. We shall rely on it in order to set down, whenever 

required, a wff of F1 as a substitution instance of a tautology of P, and to 

leave it to the reader to verify it as such. 

We shall often make use of *311 as a derived rule of inference in this way. 

And ordinarily, as sufficient indication of such use of *311. either alone or 

ollowed by one or more applications of modus ponens, we shall write simplv 
the words, “by P,“ or “use P.” or the like. 
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We add here, for reference, the five following metatheorems: 

**312 Every wff is of one and only one of the five following forms, and 

in each case it is of that forfn in one and only one way: a proposi¬ 

tional variable standing alone; f(a1( aa__ an), where f is an n-ary 

functional variable or n-ary functional constant and a1( as,..a„ 

are individual variables or individual constants or both; -A; 

[AdB]; (Va)A, where a is an individual variable. 

**313. A wf part of -A either coincides with -A or is a wf part of A. 

**314. A wf part of [A 3 B] either coincides with [A 3 B] or is a wf part 

of A or is a wf part of B. 

**315. A wf part of (Va) A either coincides with (Va) A or is a wf part of A. 

**316. If T results from A by substitution of N for M at zero or more 

places (not necessarily at all occurrences of M in A), then Tiswf. 

These metatheorems are used in particular in the proof of **323, of *340, 

and of **390, below. Their proofs are analogous to those of **225-**228, 

and are left to the reader. 

32. Consistency of F1. A wff of F1 is called quantifier-free if it contains 

no quantifiers—or, what comes to the same thing, if it contains no occur¬ 

rence of the symbol V. From any wff of F1 we obtain its associated quantifier- 

free formula (also wf) by deleting all occurrences of the universal quantifier 

—i.e., by deleting the four symbols (Va), at every place where such four 

symbols occur consecutively. 

From a wff of F1 we obtain an associated formula of the propositional cal¬ 

culus (abbreviated "afp") by first forming the associated quantifier-free 

formula, and then, in the latter, replacing every wf part f(a1( a2,.. •» a«) by 

a propositional variable not previously occurring, in accordance with the 

following rule: two wf parts f(a1( a|( . .., an) and g(b,, b2,..bm) are re 

placed by the same propositional variable if and only if f and g are the same 

functional variable or functional constant (as, of course, can happen only 

when m = «). ... 

For example, in F‘p, the wff G(x) 3, H(y) 3 ■ G(x) 3 (y)H(y) ^ 

associated quantifier-free formula G(x) 3 H(y) 3 . G(x) 3 H(y), an us 

afp is p 3 q 3 . p 3 q. The wff F(x, y) 3, (z)G(x, z) 3. F(y, y => ^ 

has as its associated quantifier-free formula F(x, y) 3 G(zt z) 3 • 

3 G(y, z), and therefore again an afp is p 3 q 3 . p 3 q. 
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Clearly, all the afps of a given wff of F1 are variants of one another in the 

sense of §13. Hence, if one of the afps of a given wff of F1 is a tautology, all 

of them are. 
Now it is easily verified that every afp of an axiom of F1 is a tautology. 

In fact for any instance A d . B d A of axiom schema *302, an afp must 

have the form A* id . B0 id Aq, where Aq and B0 are afps of A and B respec¬ 

tively; and Aq id . B0 zd Aq must be a tautology, because it is obtainable by 

substitution from the tautology P ^ • q id p- Similarly, afps of instances of 

axiom schemata *303-*305 must have, in order, the forms: 

Aq zd [B0 id C0] id . A0 id B0 zd . Aq id C0 

A0 o ~B0 d . B0 id Aq 

A0 d Bq d ■ A0 d B0 

And each of these is obviously a tautology because obtainable by substitu¬ 

tion from a known tautology. In the case of *306, A and 

SSA| 

differ (if at all) only by the substitution of one individual variable or con¬ 

stant for another, and therefore they must have the same afp Aq. It follows 

that an afp of an instance of axiom schema *306 must have the form A0 id A0, 

which is obviously a tautology "because obtainable by substitution from the 

known tautology /> id p. 

Moreover, the rules of inference of F1 preserve the property of having a 

tautology as afp, i.e., if the premiss or premisses of the rule have this prop¬ 

erty, then the conclusion does also. In the case of *301, this is immediate. 

In the case of *300, we must make use of the remark that, if one afp of a 

wff is a tautology, then all are. Let Aq z> B0 be an afp of the major premiss 

A zd B. Then Aq and B0 are afps of A and B respectively. Since Aq and 

B0 are tautologies, it follow’s that B0 is a tautology, in consequence of 

the truth-table of zd (compare the proof of **150). 

Smce the axioms all have the property of having a tautology as afp, and 

since the rules of inference preserve this property, there follows the meta¬ 
theorem: 

**320. Every theorem of F1 has a tautology as afp. 

Now it is clear that if a wff A has a tautology as afp, its negation ~A has 

as afp, not a tautology but a contradiction. Hence by **320, not both A 
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and ~A can be theorems. Thus we have the consistency of F1 in the following 

senses:318 

**321. F1 is consistent with respect to the transformation of A into ~A. 

**322. F1 is absolutely consistent. 

This proof of the consistency of F1 differs from our proof of consistency 

of the propositional calculus (§17) in that it is not associated in the same 

way with a solution of the decision problem. In fact the converse of **320 

fails, as we go on to show by giving an example of a non-theorem which 

has a tautology as afp. For this purpose we first establish the two following 

metatheorems: 

**323. For every quantifier-free theorem of F1 there is a proof in which 

only quantifier-free formulas occur. 

Proof. Let any proof be given of a quantifier-free formula C, and let 

Cj, c2, ..., cn be the complete list of individual variables and individual 

constants occurring in the proof. Then replace every wff B occurring in 

the proof (i.e., occurring as one of the finite sequence of wffs which consti¬ 

tutes the proof) by a quantifier-free formula B$, according to the following 

procedure. 

Choose individual variables b1( b2, ..., bn which are distinct among 

themselves and distinct from all of Cj, c2,..cn; and throughout the wff B 

substitute b„ b2.bn for q, c2.cn respectively. In the resulting wff 

B', a wf part (Vbr)A is to be replaced by the conjunction A,A,... A„ 

where A, is 

SS’AI 

(* = 1, 2,..n). If there is more than one wf part of B' of the form (Vbf)A, 

then the stated replacement is to be made first for one of the wf parts 

«*If propositional variables are among the primitive symbols, it follows by the same 

methods that F* is consistent in the sense of Post. which 
(Added in proof.) The demonstration of consistency is here im;ade 11a t40j 

could be applied also, with obvious modifications, to a formulation such F, ( 
having a ™le of substitution for functional variables as .pnm twe rule. Ho ^ 
as pointed out to me by John G. Kemeny the argument leading up ^ 

••322 in the present section could be greatly simplified y 8 ^ singulary 

defined associated formula in the propositional calculus. % obtained from 
associated formula of the propositional calculus ^breviated sfp ) beoh 

the associated quantifier-free formula of any wff of . P jr/*) 3 G(y) 
part by the one propositional variable p. It follows ’ but could not be 
Jould be added a£ aTaxiom to F» without producing inconsistency, butco 

so added to FJp. 
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(Vbr)A in which A is quantifier-free (obviously there must be one such); 

then in the resulting wff another wf part (Vbr)A is to be chosen in which 

A is quantifier-free, and the stated replacement is to be made again; and so 

on, the successive replacements being continued until B' has become a 

quantifier-free formula Bf. Then B$ is to be the conjunction (in some 

specified order) of all the nn wffs 

s$&::3;Bt l 

where d1( d2,..dn are any among the variables and constants clf c2,,.., cn, 

taken in any order, and not necessarily all different. 

If B is an axiom, then BJ is a substitution instance of a tautology (of P) 

as the reader may verify by considering separately each of the schemata 

*302-*306. By *311, BJ is therefore a theorem of F1, and in fact the method 

which we used in establishing *311 provides without difficulty a proof of 

BJ in which only quantifier-free formulas occur. 

If, in the given proof of C, B is inferred by *300 from premisses A z> B 

and A, then A$ is the conjunction of the nB wffs 

S5;S;:::S; At l. 
and (A B]$ is the conjunction of the nn wffs 

s$£::5;At S5:5::::5;Bt 

and therefore it is possible by a series of steps involving methods of the prop¬ 

ositional calculus only (cf. §31) to infer each of the nn wffs 

Sdfc&Bf I 

from [A B]$ and A$; and therefore by further steps involving propo¬ 

sitional calculus only it is possible to infer BJ. Specifically, what is needed 

is proofs of two substitution instances each, of the »n tautologies, 

PiPt ■ Pi (* = 1,2,..., n"), 

and proof of an appropriate substitution instance of the tautology, 

Pi • Pi => . • • • P»*—1 PlPt ■ • • PnH> 

and a number of applications of modus ponens. By the method used in the 

demonstration of *311, all of this can be accomplished without use of other 

than quantifier-free formulas. 

If, in the given proof of C, B is inferred from premiss A by generalizing 

upon the individual variable c, (thus by *301), then Bf is the conjunction 
of the « wffs 
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(* = 1, 2, .... n), and A$ is the conjunction of the nn wffs 

SiftrfcAt i. 
Thus 

At => S5;Sj:;S;Bt i 
is a substitution instance of a tautology 

P1P2 => • • •Pin 
(where the subscripts j\, ;2, . ./„ are a certain n different ones among the 

subscripts 1.2,..., «"), and therefore is a theorem of F1 by *311. Hence 

from A$ we may infer by modus ponens each of the wffs 

i, 
and hence finally by a suitable substitution instance of the tautology 

Pl^> • P2 ^ « • • • Pn" ^ PlPi • • • Pn" 

and modus ponens we may infer B$. Again by the method used in the dem¬ 

onstration of *311, this can all be accomplished without use of other than 

quantifier-free formulas. 

To sum up, we have now shown how the given proof of C can be trans¬ 

formed into a proof of C% in which only quantifier-free formulas occur. 

But by hypothesis C is quantifier-free. Therefore C| is 

and is a conjunction of wffs one of which is C. By a further application 

of propositional calculus we can therefore go on to prove C, and by the 

method of *311 this can be done still without use of other than quantifier- 

free formulas. 

**324. Every quantifier-free theorem of F1 is a substitution instance of a 

tautology of P. 

Proof. Given a quantifier-free theorem C of F1 we can find, by 323, 

proof of C in which only quantifier-free formulas occur. In this proo o . 

the only axioms used must be instances of the schemata *302, 3 * 

and therefore substitution instances of axioms of P; and the on y 

inference used must be modus ponens. Thus we have for eac sue 

wff in the proof of C, as it is obtained, that it is a substitution instance o 

theorem of P. Ultimately we have that C is a substitution ms an 

theorem of P, and therefore a substitution instance of a tautology 
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We remark, in passing, that from **324 we have a new proof of the con¬ 

sistency of F1. Indeed the absolute consistency of F1 follows from **324 upon 

giving one example of a quantifier-free formula which is not a substitution 

instance of a tautology. And the consistency of F1 with respect to the trans¬ 

formation of A into ~A then follows because, by *311 and the law of denial 

of the antecedent 

~p=3 ,p-=>q, 

if A and ~A were both theorems in any instance, then every wff would be 

a theorem. (This proof of the consistency of F1 again is not associated with 

any general solution of the decision problem of F1, but it does involve a 

solution of the decision problem for the special case of quantifier-free for¬ 

mulas.) 

Now in particular, F(x) z> F (y) is a quantifier-free formula of F*p which 

is not a substitution instance of a tautology, therefore it is a non-theorem, 

although it has a tautology as afp. Or, more generally, if f is an n-ary func¬ 

tional variable or an n-ary functional constant, and if alt a2, ..., an, 

bj, ba,. .bn are individual variables or individual constants, then 

f(®l> ^2* • • •> ®n) f(^i> ^2> • • •» ^n) 

has a tautology as afp, but is not a theorem of F1 unless a1( aa.a„ are 

in order the same as blf ba, ..., bn. 

The proof of **320 makes use of no property of the axioms of F1 except 

that every axiom has a tautology as afp. In consequence, the addition to F1 

of another axiom having a tautology as afp would not alter the property of 

the system that every theorem has a tautology as afp, and therefore would 

not destroy the consistency of the system. It follows that F1 is not complete 

in any of the senses of §18, and especially: 

**325. F1 is not complete with respect to the transformation of A into ~A, 

and is not absolutely complete. 

However, in §44 we shall prove a completeness theorem for F1p, and for 

the equivalent system Fgp, establishing their completeness in a weaker sense. 

An explanation of the incompleteness of F»p may quickly be seen from the 

point of view of the interpretation. The wff F(x) => F(y), for example, has the 

value t for aH values of its free variables, in the case of a principal interpretation 

m which there is just one individual; also, regardless of the number of individuals, 

in an interpretation which is like a principal interpretation except that the range 

°o 0r/U °f thC SiDgulary functional variables, including the variable F, 
restricted to two particular singulary propositional functions of individuals. 
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namely, the propositional function whose value is t for all arguments and the 
propositional function whose value is f for all arguments. (An interpretation of 
this latter kind, though not principal, is sound, as may readily be verified.) If 
only such interpretations as these were contemplated, it would be natural to 
expect F(x) F(y) as a theorem, and to add it as an axiom if it were not other¬ 
wise a theorem. But in other principal interpretations of F*p, in which the num¬ 
ber of individuals is greater than one, F(x) => F(y) does not have the value t 
for all values of its free variables and therefore, for the sake of the soundness 
of the interpretation, must not be a theorem. 

The completeness theorem of §44 will mean, semantically, that all those wffs of 
F*p are theorems which have, in every principal interpretation, the value t for all 
values of their free variables. Hence the theorems of any functional calculus of 
first order may be described by saying that they are the wffs which, under the 
intended way of interpreting the connectives and quantifier, are true (1) for 
all values of the free variables, (2) regardless of the denotations assigned to the 
constants, and (3) independently of the nature and number of the individuals— 
provided only that there are individuals, that the values of the individual 
variables and the denotations of the individual constants are restricted to be 
individuals, that the values of the propositional variables are restricted to 
truth-values, and that the values of the n-ary functional variables and the de- 

• 

notations of the n-ary functional constants are restricted to be n-ary proposi¬ 

tional functions of individuals. 

33. Some theorem schemata of F1. A theorem schema is a syntactical 

expression which represents many theorems (commonly an infinite number 

of different theorems) of a logistic system, in the same way that an axiom 

schema represents many different axioms. In the treatment of F1 we shall 

deal with theorem schemata rather than with particular theorems, and shall 

supply for each theorem schema, by means of a schema of proof, an effective 

demonstration that each particular theorem which it represents can be 

proved. As in the case of derived rules of inference (discussed in Chapter I), 

justification of this lies in the effectiveness of the demonstration, whereby 

for any particular theorem represented by a given theorem schema 

particular proof can always be supplied on demand. Thus our procedure 

amounts not to an actual formal development of the system F1 but rather 

to giving effective instructions which might guide such an actual develop¬ 

ment. It is important to remember that the theorem schemata are in ac 

syntactical theorems about F1, and only their instances, the partic ar 

theorems which they represent, are the theorems of F1. 

*330. b $“A| (3a)A, where a is an individual variable, b is an individual 

variable or an individual constant, and no free occurrence o a m 

is in a wf part of A of the form (b)C. 
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Proof. By *306. b (a)-A id ~S“A|. 

Hence by P.319 b $£A| => ~(a)~A.320 

*331. b (a)A (3a)A.321 

Proof. By *306. b (a)A => A.322 

By *330, F Ad (3a)A.323 

Then use the transitive law of implication.321 

*332. FAd.Bd. (a)A => B. 

Proof. By *306, b A =>a B => . A n> B.325 

Also by *306. b (a)A z> A.325 

Then use P.328 

*333. bAD,BD.(a)AD(a]B, 

Proof. By *332 and generalization,327 b A z>„ B Z5. . (a)A B. 

Hence by *305, b A z>a B => . (a)A =>a B.328 

By *305, b (a)A z>a B => . (a)A o (a)B. 

Then use the transitive law of implication.324 

*334. b A =, B d . (a)A = (a)B. 

Proof. By P, b A = B z> . A => B. 

•‘•For explanation of the phrase "by P” (i.e., by propositional calculus) see the 
explanation which follows *311 in §31. 

,taThis final expression is identical with *330. the theorem schema to be proved 

(cf. D14). In such cases we shall not refer explicitly to the definitions or definition sche¬ 
mata involved but shall merely leave it to the reader to see that the proof is complete. 

“‘The condition that a shall be an individual variable may be taken as obvious, since 
the formula would not otherwise be wf.We shall hereafter, in stating theorem schemata 

Sy«^l.atlCa11^ °mit exPlicit statement of such conditions when obvious for this reason! 
*This special case of *306 in which b is the same variable as a will be used frequently. 

In particular (by modus ponens) it provides the inverse of the rule of generalization, as 

1 ^ed.rule: and we sha11 later have to use it in this way also. 
me 't 'S the sPec'a* case °* *330, in which b is the same variable as a 

Such a reference to a particular tautology of P by name will be employed as a more 

"by P”or "then usc p" ,h“s “ i"d“di-8 *—« 
’“Compare footnote 322. 
“'See the explanation in §31. 

w,th *332 as premiss, the rule of inference *301 is applied 
“'More explicitly, we take as major premiss 

A B =>a [(a)A 3B]d,Ad,Bz 

Which is an instance of *305, and use modus ponens. 

• (a) A oa B. 
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Hence by generalization and *333,329 F A =t B u . A d, B. 

Hence by *333 and the transitive law of implication, 

FA= Bd. (a)A3 (a)B. 

Again, by P, FAeBd.BdA. 

And hence by a similar series of steps, b A =a B 3 . (a)B 3 (a) A. 

Then use P. 

*335. I- A 3 (a)B = . A 3a B, if a is not free in A. 

Proof. By *306, (- (a)B 3 B. 

Hence by P, b A 3 (a)B 3 . A 3 B. 

Hence by generalization and *305, 1- A 3 (a)B 3 . A 3, B. 

Then use *305 and P. 

*336. I- (a)(b)A= (b)(a)A. 

Proof. By *306, b (b)A 3 A. 

Hence by generalization and *333, b(a)(b)A3 (a)A. 

Hence by generalization and *305, b(a)(b)A3 (b)(a)A. 

Similarly, b (b)(a)A3 (a)(b)A. 

Then use P. 

*337. I- (a)A = A, if a is not free in A. 

Proof. By P, b A 3 A. 

Hence by generalization and *305, b A 3 (a)A. 

By *306, I- (a)A 3 A. 

Then use P. 

*338. b ~(3a)A = (a)~A. 

Proof. By P, b ~~(a)~A = (a)~A. 

*339. b (a) A = (b)B, if there is no free occurrence of b in A, and no free 

occurrence of a in A is in a wf part of A of the form (b)C, and B is 

$JA|. 

Proof. By *306, b (a)A 3 B. Hence, by generalizing upon b and then 

***I.e., more explicitly, we take 

A = B .A 

as premiss, and generalize upon a (*301); then wc take the responens. 
premiss, and an appropriate instance of *333 as major premiss, and use mo 
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using *305, we have that h (a)A id (b)B. Now the given relation between 

the wffs (a) A and (b)B is reciprocal, i.e., there is no free occurrence of a in 

B, and no free occurrence of b in B is in a wf part of B of the form (a)D, 

and A is $*B|. Therefore in the same way we have that h (b)B id (a)A. 

Therefore by P, I- (a)A = (b)B. 

34. Substitutivity of equivalence. In this section we establish the 

rule of substitutivity of equivalence (*342) and some related derived rules of 

inference. (Compare *158, *159, 15.3 in the propositional calculus.) 

*340. If B results from A by substitution of N for M at zero or more places 

(not necessarily at all occurrences of M in A), and if a,, a2, .. ., a„ 

is a list of individual variables including at least those free variables 

of M and N which occur also as bound variables of A, then 

b M = . Nid . A = B 
“l“l 

Proof. In a manner analogous to that of the proof of *229, we proceed by 

mathematical induction with respect to the total number of occurrences 

of the symbols id, ~, V in A. 

We consider first the two special cases, (a) that the substitution of N 

for M is at zero places in A. and (b) that M coincides with A and the sub¬ 

stitution of N for M is at this one place in A. In case (a), B is the same as 

A, and therefore b M N id . A = B by P. In case (b), A and B 

are the same as M and N respectively, and therefore by n uses of *306,330 

and the transitive law of implication, hM=,, . Nd.A=B. 

Now if the total number of occurrences of the symbols id. V in A is 0, 

we must have one of the special cases (a), (b), and the result of *340 then 

follows quickly, as we have just seen. Consider then a wff A in which this 

total number is greater than 0; the possible cases are the three following: 

Case 1: A is of the form A1 id A2. Then (unless we have the special case 

(b) already considered) B is of the form Bt id B2, where B, and B2 result 

from A, and A2, respectively, by substitution of N for M at zero or more 

places. By hypothesis of induction, 

h „N = • A, = B,. 

h M =.xv-*nN => • A2 = B2. 

Hence we get the result of *340 by P. using an appropriate substitution 
instance of the tautology, 

‘“Again this is the special 
case of *306 in which a and b are the same variable. 



190 FUNCTIONAL CALCULI OF FIRST ORDER [Chap. Ill 

& 3 ’ ft — 3 * & 3 ■ I2 = ri\ • P => • <h 3 q2 = > rx 3 r2. 

Case 2: A is of the form ~AX. Then (unless we have the special case (b) 

already considered) B is of the form ~B1( where Bj results from Ai by sub¬ 

stitution of N for M at zero or more places. By hypothesis of induction, 

^ M =8,8,...an Nd.AjSBj. 

Hence we get the result of *340 by P, using an appropriate substitution in¬ 

stance of the tautology, 

[P => .q= r] => . p Z> . = ~r. 

Case 3: A is of the form (a)A1. Then (unless we have the special case (b) 

already considered) B is of the form (a)B1( where Bj results from Ax by 

substitution of N for M at zero or more places. By hypothesis of induction, 

■A-** 

Hence by generalizing upon a and then using *305,331 we have that 

b M = a1a,...aH 

Hence we get the result of *340 by using *334 and the transitive law of 

implication. 

Thus the proof of *340 by mathematical induction is complete. 

The two remaining metatheorems of this section follow as corollaries: 

*341. If B results from A by substitution of N for M at zero or more 

places (not necessarily at all occurrences of M in A), and if b M = N, 

then b A = B. 

Proof. By *340, *301, and *300. 

*342. If B results from A by substitution of N for M at zero or more places 

(not necessarily at all occurrences of M in A), if h M = N an 

b A, then b B. (Rule of substilutivily of (material) equivalence.) 

Proof. By *341 and P. 

331At this step it is essential that a is not a free variable of 

free variables 
This is secured by the hypothesis that among a*, . . .. a* are a 
of M and N which have bound occurrences in A. 
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EXERCISES 34 

34.O. With aid of the results of §32, show that the following are non¬ 

theorems of F1?: 

(1) F(x)z>xG(x)z> (3x). F(x)G(x) 

(2) (3x)F(x) zd (x)F(x) 

(3) F(x) =dx . F(y) zdv (C(x) ^ G(y)] v (z)F(z) 

34-i- Show that any proof of a wff (a) A as a theorem of Fl must contain 

an application of the rule of generalization (*301) in which the variable 

that is generalized upon is a.332 

34.2. In *340, to what extent may the hypothesis be weakened that 

among a,, a,.an are all the free individual variables of M and N 

which occur as bound variables in A? 

Establish the following theorem schemata of F1, using methods and results of 
§§30-34, but not those of any later section: 

34*3* The theorem schema of which (x)(y)F(x, y) id (y)F(y, y) is a basic 
instance. 

34.4. I- B zd„ A zd . (3a)B A, if a is not free in A. 

34.5. I-Azj.Bd. (3a)A zd (3a)B. 

34.6. h A =, B zd . (3a)A = (3a)B. 

35. Derived rules of substitution. By taking advantage of the device 

of axiom schemata, as discussed in §27, we have formulated the system F1 

without use of rules of substitution as primitive rules of inference. And 

indeed this way of doing it seems to be the only possibility in the case of a 

simple applied functional calculus of first order. But if there is a sufficient 

apparatus of variables, an alternative formulation is possible in which there 

are primitive rules of substitution (in addition to the rules of modus ponens 

and generalization) and the number of axioms is finite—as we shall see in 
§40. 

In this section, the rules of substitution in question are obtained as derived 

rules of F‘. In doing this no distinction need be made of different kinds of 

functional calculi of first order, as the rules in fact all hold even in the case 

of a simple applied functional calculus of first order. But in a case in which 

variables of a particular kind are not present, of course a rule of substitution 

for variables of this kind reduces to something trivial. 

in §30 below * ° amended treatment of the deduction theorem appears 
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*350. If a is an individual variable which is not free in N and b is an 

individual variable which does not occur in N, if B results from A 

by substituting S£N| for a particular occurrence of N in A, if b A, 

then f- B. 

[Rule of alphabetic change of bound (individual) variable.) 

Proof. By *339 and *342 (the various wf parts of N of the form (a) A, 

being taken one by one in left-to-right order of their initial symbols). 

*351. If a is an individual variable and b is an individual variable or an 

individual constant, if no free occurrence of a in A is in a wf part of 

A of the form (b)C, if f- A, then h S£A|. 

(Rule of substitution for individual variables.) 

Proof. By *301 and *306. 

In order to state rules of substitution for propositional and functional 

variables we introduce a new substitution notation for which we use the 

letter $. 

If p is a propositional variable, the notation 

$bA| 

shall stand for333 A unless the condition is satisfied that (1) no wf part of A 

of the form (b)C, where b is a free variable of B, contains a free334 occurrence 

of p; and, if this condition is satisfied, it shall stand for333 

S»A|. 

If f is an w-ary functional variable and x1( x2, ..., xn are distinct indi- 

vidual variables, the notation 

a.) 
A| 

shall stand for 335 A unless the two conditions are satisfied that: (1) no wf 

part of A of the form (b)C, where b is a free variable of B other than 

xlf x2, . .x„. contains a free336 occurrence of f; and (2) for each ordered 

wI.e., for any particular propositional variable p and any particular wf ' 
the syntactical notation in question denotes the wff A if the condition (1) IS “ . 
fied. and, if the condition (1) is satisfied, it denotes the wff which results by su 

B for all free occurrences p in A. . . , use 
,MIn connection with Fl the word "free" here is superfluous. It is 

we shall wish to use the same substitution notation also in connection wi o 

(without changing the wording of the definition). 

n4Compare footnote 333. . .. pi be- 
MiThe restriction to free occurrences of f is superfluous in Aco?n?C \ restriction 

cause in a wff of Fl every occurrence of f is a free occurrence. As be o , logistic 
is included for the sake of use of the same notation in connection with 

systems. 
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n-tuple a,, a2>..an of individual variables or individual constants (or 

both, not necessarily all distinct) for which f(alt a2> .. .. a„) occurs in A in 

such a way that the occurrence of f is a free occurrence.33® the wf parts of B. 

if any, that have the forms (aJC, (a2)C__ (an)C contain no free occur¬ 

rences of x2, x2.xn respectively.337 And, if these two conditions are 

satisfied, the notation shall stand for335 the result of replacing f(a,, aa, 

. .an), at all of its occurrences in A at which f is free,339 by 

• •i*»— 

this replacement to be carried out simultaneously for all ordered n-tuples 

a1( a2.an of individual variables or individual constants (or both, not 

necessarily all distinct) such that f(ax, a2, . . an) has an occurrence in A 

at which f is free. 

•3520. If p is a propositional variable, if h A, then 

h5£A|. 

(Rule of substitution for propositional variables.) 

*352n. If f is an n-ary functional variable and xlP x2, ..., x„ are distinct 

individual variables, if h A, then 

h§J*i-**.*-»A|. 

(Rule of substitution for n-ary functional variables.) 

Proof. The proof of *3520. *352n is analogous to that of **271. 

We make use of a wff B' which differs from B by alphabetic changes of 

the bound and free individual variables of B in such manner that: (i) the 

individual variables occurring in B' are none of them the same as individual 

variables occurring anywhere in the given proof of A; and (ii) the same 

variable occurs at two places in B' if and only if the variables occurring at 

the two corresponding places in B are the same. Let y, (i = 1, 2.n) 

be the variable which occurs in B' in place of the variable x, in B; or if 

x< does not occur in B, choose y, to be an individual variable not occurring 
otherwise. 

We observe that, if E is any axiom occuring in the given proof of A, then 

Sb-E| or .y->E| 

(as the case may be) is again an axiom. 

M,In other words, to satisfy condition (21 if tta a. n \ k=c 

ren^f'x'if f(T ^ (a,)* *? J Wf part °f then <a‘>C shalfcontain no hZ^lur- 

* - ^ “vn“-,c is 
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Moreover, in any application of the rale of modus ponens in the given 

proof of A, let the premisses and conclusion be C 3 D, C, D. Then 

or 

QlYvTi> •••» y n) 

S5-C = D|. §b'D| 

cddi, §J?i,y*.y"’ci, Sp1-**- 

(as the case may be) are also premisses and conclusion for an application of 

the rale of modus ponens,338 

Again, in any application of the rale of generalization in the given proof 

of A, let the premiss and conclusion be C, (b)C. Then 

or 

§S'C|. Sj'(b)C| 

S£"7'.yJC|, Sjf1,7*.y“*(b)C| 

are also premiss and conclusion for an application of the rale of generali¬ 

zation.338 

If, therefore, in the given proof, 

Aj, Aj,..., A^, 

of A we replace each wff A, (* = 1, 2,..., m) by. 

StAJ or 5b'"  .'•’A.I. 

we obtain a proof of 

SJ.A| or §p-y» y"’A| 

(as. the case may be). 

In order to obtain the required proof of the wff 

SgA| or .X,,)A| 

(unless this is the same wff as A, in which case the matter is trivial) we use 

the proof just found of 

SJ,A| or §;r,,y‘.yB)A| 

and add to it a series of steps in which the required alphabetic changes of 

*”The reason for introducing the wff B' may be seen in this paragrap o P 

Namely, it is necessary to employ B' instead of B for substitution in though 

because of the possibility that the numbered conditions, (1), or ( ) an \ • r; and 
holding for the 5-substitution of B in D may fail for the 5-substitu ion 

tt$Again in this paragraph of the proof the necessity of employing B inste 

is seen, because of the possibility that b might be a free vana e o 
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bound individual variables are accomplished by means of *339 and *342 (as 

in the proof of *350) and the required substitutions for free individual 

variables are accomplished by means of *301 and *306 (as in the proof of 

*351 ).340 To make matters definite we may specify that first the required 

alphabetic changes of bound variables shall be made in alphabetic order 

of the variables to be changed, and, for any one variable, in left-to-right 

order of the relevant occurrences of B'; and that then the required sub¬ 

stitutions shall be made in alphabetic order of the variables to be substituted 

for. 

This completes the proof of *3520, *352n, except that, in order to make it 

possible to use these metatheorems as derived rules, it is necessary to fix 

explicitly how the individual variables of B' and the individual variables 

y,, Ya* • • •• yn shall be chosen. We do this by taking the different individual 

variables of B in order of their first occurrence in B, then after them the 

remaining variables (if any) among Xj, x2, . . ., xn, in order. To each of these 

in turn, as corresponding variable (in B' or among yx, y2, . . ., yn), is assigned 

the first individual variable in alphabetic order which occurs nowhere in 

the given proof of A and which has not previously been assigned.341 

EXERCISES 35 

35*°* *350, to what extent may the conditions be weakened that a 

is not free in N and that b does not occur in N: (1) if the remainder of the 

metatheorem is to remain unchanged; and (2) if instead of S£N| is used 

the result of substituting b for the bound occurrences of a throughout N? 

35.I. In each of the following cases, write the result of the indicated 
substitution: 

(J) S(*)[F<1,.) 3G<*,,)](3*)(y)F(y. x) (3j:)F(x, x)\ 

(2) *>(aW*) => ^(y)l 

(3) S(*()C(*) => gwF[x, z) 3 (3y)F{y, z)\ 

notat‘on5Ze clumhe.redtcondlt,ons- (»>• or (») ^nd (2). in the definition of the 
the hnS oS Tth' n m ? L aSSUre that in this added se"es of steps constituting 
iniv dual ^riaL^LPar00 Kn.°!hing ls/e<luired exceP* alphabetic changes of bound 

•350 'and *3^1 Variab,es in accordance with 

the de/ived ™les of *350 and *351. and our proofs of them, will con- 

*352 wilUontinue Kid F* b>[ adjoininS any additional axioms. But 

nation that th^result of^n ^ K f^? 4x101115 are such 13 to maintain the sit- 
a tieorem S-subst.tutmn m any axiom is again an ax.om, or at least 
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(4) y) =>*v (3*).F(x, z)I 

(5) §g11',z)z> (»)C(v.*)-F(y- *) =>x G(x, */) =>v*. F(y, z) => (z)G(z, y)| 

(6) Sjj*; F{t,y){x)F[z, X) v (y)F(y, z) => F(z, z)| 

35.2. In order to verify the necessity for each of the numbered conditions, 

(1) and (2), in the definition of the notation 

§!'■-.“-'A! 

show by examples that *352! would fail if either of these numbered condi¬ 

tions were omitted. 

36. The deduction theorem. We shall now establish a deduction theorem 

for F1, analogous to that for the propositional calculus (cf. §13). 

The notion of a variant of a wff, introduced in §13 for the system P,, 

may be extended in obvious fashion to wffs of F1 or of other formulations 

of the functional calculus of first order: namely, a variant B' of a wff B 

differs from B only by alphabetic changes of the variables of B of all kinds 

(bound or free, individual, propositional, or functional), in such a way that 

the same variable occurs at two places in B' if and only if the variables 

occurring at the two corresponding places in B are the same. In connection 

with the deduction theorem for F1, we need only observe that every variant 

of an axiom is also an axiom. But in other cases, such as, e.g., the formula¬ 

tions of functional calculi of first order introduced in §40, this will not hold, 

and in such cases the notion of a variant must play a role in the treatment 

of the deduction theorem analogous to that which it had in §13. 

A finite sequence of wffs, Bj, B2,..., Bm, of F1 is called a proof from the 

hypotheses A1( A2.A„ if for each i either: (1) By is one of Aj, A2.A„. 

or (2) By is an axiom; or (3) B( is inferred according to *300 from major 

premiss B, and minor premiss Bt, where 7 <i, k < t; or (4) By is inferre 

according to *301 (the rule of generalization) from the premiss By, where 

j < i, and where the variable that is generalized upon does not occur as a 

free variable in A1( A2.An; or (5) B( is inferred by an alphabetic change 

of bound variable, according to *350,342 from the premiss By, where 7 < *» 

or (6) B, is inferred according to *351,342 by substitution in the premiss /. 

where j < i, and where the variable, a, that is substituted for does not occ^ 

as a free variable in Alf A*,.... An; or (7) By is inferred according to ’ 

by substitution in the premiss By, where j < i, and where the vana 

*4*Or, more exactly, according to *350—or *351—or *352, as these would be res 

to make them read as primitive rules of inference. 
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p or f, that is substituted for does not occur as a free variable in Alt A2. 

Such a finite sequence of wffs. Bm being the final formula of the sequence, 

is called more explicitly a proof of Bm from the hypotheses A,, A2, . . A„. 

And we use the (syntactical) notation 

^l> ^2.b 

to mean: there is a proof of Bm from the hypotheses A1( A2, . . An. 

The special case that n = 0 is not excluded. It is true that, because of 

clauses (5), (6), (7) in the foregoing definition, a proof from the null class 

of hypotheses is not the same thing as a proof. But we shall hereafter use 

the notation, b Bm, indifferently in the sense of §30, to mean that there is a 

proof of the wff in question, and in the sense of the present section, to mean 

that there is a proof of it from the null class of hypotheses—relying on the 

metatheorems *350-*352 to enable us to obtain (effectively) a proof of 

any wff whenever we have a proof of it from the null class of hypotheses.343 

*360. If Aj, A2__ An 1- B, then A1( A2.}- An r> B. 

(The deduction theorem.) 

Proof. Let Bj, B2, .... Bm be a proof of B from the hypotheses Alt A2, 

..A„ (Bm being therefore the same as B). And construct the finite se¬ 

quence of wffs An z> B„ An z> B2.An r> Bm. We shall show how to 

insert a finite number of additional wffs in this sequence so that the resulting 

sequence is a proof of An zo Bm, i.e., of An zd B, from the hypotheses 
Aj, A2,. .An_x. 

In fact consider a particular An B„ and if i > 1 suppose that the in¬ 

sertions have been completed as far as An => B,_j. The eight following cases 
arise: 

Case la: B, is An. Then An zj B, is An A„, a substitution instance of 

the tautology pz^p. Therefore insert before An zd B, the wffs needed to 

make up the proof of it that is obtained by the method used in the demon¬ 

stration of *311. (No substitutions or generalizations appear in this.) 

Case lb: B, is one of Av A,.An_1( say A,. Then A, . AB B< is 

an axiom, an instance of *302. Therefore insert before An z> B, the two wffs 

tion k! * JT W 1 ead n° con£us,on-in ^ contexts in which the nota- 
other^tS ^ US!?' becVise we know ttat b B °°e sense if and only if \- B in the 

Howev"'the ambiguity may be removed if desired by agreeing that when 
hypotheses are explicitly written (as in, e.g.. "p\-q => p•• or "A; JC A U B 

the notation shall^be understood in the sense of the present section-and in su’ch a else 

value *0 to « B„t h Sh?U.not ** affected by ^ possibility of assigning the 
before it fas' ^ „ » *n 2* S‘gn **.“ wntten actually without hypotheses appearing 
oelore ,t (as. e.g., hP =>.<!=> p"). it shaU be understood in the sense of §30. 
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Ar 3 . An 3 B, and A,, from which An z> B< is inferred by *300 (modus 

ponens). 

Case 2: By is an axiom. Then B, 3 . An 3 By is an axiom, an instance of 

*302. Therefore insert before An zd B, the two wffs B,- z> . An 3 By and By, 

which both are axioms, and from which An zd By is inferred by modus ponens. 

Case 3: B, is inferred by modus ponens from major premiss By and minor 

premiss Bfc, where / < *, k < i. Then By is Bt zd Bf. Insert before An 3 By 

first the wff An z B, z , A„ d Bt z . An d Bj (which is an axiom, an in¬ 

stance of *303) and then the wff A„ 3 Bt 3 . An 3 By (which can be inferred 

by modus ponens, and from which then A„ 3 By can be inferred by modus 

ponens, since the necessary minor premisses, A„ 3 By and A„ 3 Bt, are 

among the earlier wffs already present in the sequence being constructed). 

Case 4: By is inferred by the rule of generalization from the premiss By, 

where j < i. Then B, is (a)By, where a is an individual variable which does 

not occur as a free variable in A1( A2,..An. Insert before An 3 By first 

the wff An 3a By 3 . An 3 By (since a is not a free variable of A,,,3*4 this is 

an axiom, an instance of *305), and then the wff An 3a By (which can be 

inferred by generalization344 from the earlier wff An 3 B, already present in 

the sequence being constructed, and from which then An 3 By can be in¬ 

ferred by modus ponens). 

Case 5: B( is inferred by an alphabetic change of bound variable, according 

to *350, from the premiss By, where j < i. In this case a corresponding 

alphabetic change of bound variable suffices to infer An 3 By from An 3 By. 

Case 6: By is inferred according to *351, by substitution in the premiss By, 

where ; < i, and where the (individual) variable that is substituted for 

does not occur as a free variable in Ay, A2,..A„. In this case the same sub¬ 

stitution suffices to infer An 3 By from An 3 By.345 

Case 7: By is inferred according to *352, by substitution in the premiss 

By, where j < i, and where the (propositional or functional) variable that 

is substituted for does not occur as a free variable in Ay, AJ, . • •» A„. J* 

this case the same substitution suffices to infer An 3 By from A„ 3 By. 

This completes the proof of the deduction theorem. From the special case 

of it in which n = 1 we have the corollary: 

*361. If A I-B, then I-A 3 B. 

•“Notice here the role of the condition that a does not occur “ aJrf?/inning 
Aj, A,.A. (clause (4) in the definition of proof from hypotheses at the begi 

°f ‘“Notko^'i'n1particular, the role of the condition that the variable which is substituted 

for does not occur as a free variable in A*. 
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In what follows we shall often use the deduction theorem as a derived 

rule in establishing theorems or theorem schemata. For this purpose it is 

essential that our proof of it is effective.318 It is left to the reader to verify 

this, after supplying a definite particular proof of the wff An id An to be 

used for the case la. 

The following metatheorems, *362 and *363,317 are also needed in con¬ 

nection with use of the deduction theorem as a derived rule. Tacit use will 

often be made especially of *363.318 

*362. If every wff which occurs at least once in the list AlP Aa, . . An 

also occurs at least once in the list C1( C2, . . ., Cr. and if A,, A2, 

..An 1- B, then ClP C2...Cr h B. 

Proof. Let alP a2,.... a, be the complete list of those variables of all kinds 

(individual, propositional, functional) which occur as free variables in 

Cj, C2, ..Cr but do not occur as free variables in Alf A2, .. An (though 

some of them may perhaps occur as bound variables in At, A2,..., AJ.Then, 

if the given proof of B from the hypotheses AlP A2, . . An is not also a proof 

of B from the hypotheses ClP C2, .. Cr, it can only be because it involves 

generalizations upon or substitutions for some of the variables a,, a2, . . ., a,. 

Therefore let clP c2, .. ., c, be variables which are all distinct and which 

do not occur in ClP C2.Cr or in the given proof of B from the hypotheses 

A2.An, q being a variable of the same type (individual, proposi¬ 

tional, singulary functional, binary functional, etc.) as alP c2 being a variable 

of the same type as a2, c3 a variable of the same type as a3, and so on. 

And throughout the given proof of B from the hypotheses AlP A2, . . ., An 

replace alP a2, ..a, by clP c2, ..., c, respectively. The result is a proof of 

from the hypotheses DlP D2.Df, where D„ Da.Dr differ from 

c*’ ca.cr> respectively, at most by certain alphabetic changes of bound 

variables. This is changed into a proof of B from the hypotheses D1( D2, 

..., Dr by adding at the end, if necessary, an appropriate series of alpha¬ 

betic changes of bound variables and substitutions (under clauses (5), (6), 

(7) in the definition of proof from hypotheses). Then finally a proof of B 

discussion of derived rules of inference in §12, and the discussion at the 

“’Compare ^ deduCtlon theorem for the propositional calculus. 

proofof W^«c*333 iSJUSCd iD thG pr°°f °£ *365’ whcn *364 is used in 
the proof of365 13 Pr°°f °f *367, when *333 and *392 are used in 
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from the hypotheses Cj, C2, . .Cr is obtained by inserting, for various 

values of i, as necessary', wffs to constitute a proof of D< from C, by alpha¬ 

betic changes of bound variables. 

The foregoing construction has to be made more explicit at several places, 

in order to allow the metatheorem to be used as a derived rule. For example, 

definite instructions must be given as to the choice of the variables q, q, 

..q, so as to make it fully determinate. Details of this are obvious but 

cumbersome, and may be left to the reader.349 

By taking n = 0 in *362, we have as a corollary: 

*363. If h B, then Cv C2...., Cr h B. 

We go on to establish a number of derived rules (*366- *369) that facilitate 

the use of the existential quantifier, in connection with the deduction 

theorem. As a preliminary to this, two theorem schemata (*364, *365) are 

demonstrated, with aid of the deduction theorem as a derived rule. 

*364. h B 3a A 3 . (3a)B 3 A, if a is not free in A. 

Proof. By *306, B 3a A h B 3 A. 

Hence by P, Bd.AI-.Ad ~B. 

Hence by generalization, B d, A f- ~A. 3a -B.360 

Hence by *305, Bd,A[»Ad (a)~B. 

Hence by P, B 3a A h ~(a)~B 3 A. 

Then use the deduction theorem. 

•365. (■ A 3, B 3 , (3a)A 3 (3a)B. 

Proof. By *306, A 3. B h A 3 B. 

Hence by P, A 3a B h ~B 3 -A. 

Hence by generalization, A 3, B h ~B 3, -A.350 

Hence by *333, A 3a B h (a)~B 3 (a)~A. 

Hence by P, A 3a B t- ~(a)~A 3 ~(a)~B. 

Then use the deduction theorem. 

*366. If Ax, A2__ A„ h B, and a is an individual variable which does 

not occur as a free variable in Av A*, ..An_lf B, then i> 

K-v (3a)An h B.351 

“•Compare the last two paragraphs in the proof olJ352. theorem, care 
Where generalization is thus used in connection with the d as a free 

must be taken that the variable a which is generalized upon do« ^ 
variable in any of the hypotheses. It is left to the reader to verify this m 
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Proof. By the deduction theorem, 

A1( Aj. ..An_j h An Hi B. 

Hence by generalizing upon a and then using *364, we have that 

Ax. A,.An_i I- (3a)An => B. 

Hence by modus fonens, 

Aj, A,, . •., An_1( (3a)An h B. 

*367. If A|, Aa, ..., An h B, and a is an individual variable which does 

not occur as a free variable in A2, A2,..An_lf then Ax, A2, .. 

A„_x. (3a)An h (3a)B. 

Proof. By the same method as the proof of *366, but with use of *365 

replacing that of *364. 

*368. If Aj, A2,..., An h B, and a is an individual variable which does not 

occur as a free variable in Alf Aj.A,,.,, B, then A1( A2, . . 

An—r, (3®) ■ An_r+1An_r+2... An I- B. 

Proof. By P, 

Aj, A2,..An_f, An_r+1A„_r+2... An h B. 

Hence use *366. 

*369. If A1( Aj-- An h B, and a is an individual variable which does not 

occur as a free variable in A1( A2.A*.,, then A„ A2.An_., 

(3a). An_r+1AB_r+2 ... A„ 1- (3a)B. 

Proof. By the same method as the proof of *368, but with use of *367 
replacing that of *366. 

37. Duality. As in § 16, we begin by applying the process of dualization 

not to wffs but to expressions which are abbreviations of wffs in accordance 

with certain definitions. Namely, we allow abbreviation by D3-11 and D14, 

but not by other definition schemata35* and not by omissions of brackets.' 

first'ordertwHilbert^ “ a meU,heorem of the functional calculus of 
It mav a,^‘lbert Be™ys GrundlaSend*rMaihemaiik, vol. 1(1934),pp. 157-158 
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Of such an expression the dual is obtained by interchanging simultaneously, 

wherever they occur, each of the following pairs of connectives and quanti¬ 

fiers (or better, each of the following pairs of symbols): z> and <£, disjunction 

and conjunction, = and ci and 4>, v and |, V and 3. 

Of a wff of F1 a dual is obtained by writing any expression of the foregoing 

kind which abbreviates the wff, dualizing this expression, and then finally 

writing the wff which the resulting expression abbreviates. As a particular 

case, the given wff itself may be used in the role of the expression which 

abbreviates it, and when this is done the principal dual of the given wff is 

obtained. 

By examining D3-11 and D14, it will be seen that any two duals of the 

same wff can be transformed one into the other by a series of steps of 

which each consists, either in replacing a wf part by N, or in replacing 

a wf part N by (i.e., as we may say, either in deleting or in inserting 

a double negation). Hence by P and *341: 

*370. If B and C are duals of A, then h B = C. 

In order to establish for F1 a principle of duality analogous to *161, we 

shall show for each axiom of F1 that the negation of any dual of it is a theo¬ 

rem of F1; also for each rule of inference of F1 that, if we replace the premisses 

and conclusion by negations of duals of them, the inference still holds as a 

derived rule. It will then follow that the negation of a dual of a theorem of 

F1 is always a theorem of F1. 

To begin with the rules of inference, consider first *300. Here the premisses 

are A => B and A, the conclusion B. Let A» be a dual of A, and B, a dual of 

B. Then one of the duals of A id B is A, <£ Bt. By P. if H ~ . A, c}: Bi *n 

1- -A,, then I- ~Bt. Hence by *370 and P, if the negation of any dual of 

Ad B and the negation of any dual of A are theorems, then the negation o 

every dual of B is a theorem. 

Likewise consider *301. The premiss is A and the conclusion (a)A. r 

~A,, the negation of any dual of A. we may infer first (a)~A, by a 

thence -(BajA, by *338 and P. This is the negation of one of the duals o 

the conclusion, and from it the negation of every other dual of the cone usio 

follows by *370 and P. • m 
Turning now to the axioms, we see that one of the duals o any 

which is an instance of *302, *303, *304 must have, in corresponding o 

of these definition schemata, inventing smtah'e notations for the Purpose.^ jn 

seems not worth while, as the notations so introduced would hardly De 

connection with the treatment of duality. 
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the following forms (where Ax, Bj, C, are duals of A, B, C respectively): 

Ai 4: . Bj 4: A, 

A, 4: [B, 4: C,] <4 . Ax 4: B, cj: . A, $ Cx 

-A, 4: *Bt 4: . B, 4: A, 

And the negation of each of these may be seen to be a substitution instance 

of a tautology, therefore a theorem by *311. That the negation of every 

other dual of the same axiom is also a theorem, then follow's by *370 and P. 

In the case of an axiom which is an instance of *306, one of its duals has 

the form 

(3a)Ax 4: SjAJ. 

where a is an individual variable, b is an individual variable or an individual 

constant, and no free occurrence of a in Ax is in a wf part of Ax of the form 

(b)C 353 That the negation of this is a theorem follows by *330 and P. Hence 

by *370 and P, the negation of every dual of the axiom is also a theorem. 

In the case of an axiom which is an instance of *305, in order to prove 

similarly that the negation of every dual of it is a theorem, we need only the 

following theorem schema of F1: 

*371. \- A 4: (3a)B z> (3a) . A c£ B, if a is not free in A. 

Proof. By P, b B A = — ,Bd A. 

Hence by *364 and *342, 1- (a)~~[B z> A] => . (3a)B =d A. 

Then use the law of contraposition (f223). 

Thus we have shown that every axiom of F1 has the property that the 

negation of every dual of it is a theorem of F». and that the rules of inference 

of Fi preserve this property. Hence every theorem of F* has the property, 
i.e.: 

•372. If h A. and if Ax is a dual of A, then b •Al. 

(Principle of duality.) 

As in §16, two special principles of duality follow as corollaries, by P: 

•373. If b A => B, and if Ax and B, are duals of A and B respectively, then 
r Bj D Ax. 

_(S^tfcjoi principle of duality for (material) implications.) 
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*374. If h A = B, and if and Bx are duals of A and B respectively, then 

y A: = Bj. 
[Special principle of duality for [material) equivalences.) 

By the dual of a theorem schema or axiom schema of F1 we shall mean: 

(1) if the schema has the form of an implication, the theorem schema ob¬ 

tained from it by *373; (2) if the schema has the form of an equivalence, 

the theorem schema obtained from it by *374; (3) in other cases, the theorem 

schema obtained from it by *372. In case (1), the dualization is to be per¬ 

formed on the antecedent and consequent of the schema as actually written, 

and according to the instructions as given in the first paragraph of this 

section; similarly, in case (2) the dualization is to be performed on the two 

parts of the schema as actually written, and in case (3) it is to be performed 

on the schema as actually written, again according to the instructions in the 

first paragraph of this section. Thus the dual of a theorem schema or axiom 

schema may differ according to what abbreviations are used in writing 

the schema, but it is unique for any schema as actually written. It is under¬ 

stood that, before dualizing a schema, any abbreviations by omission of 

brackets or by D12, D13, D15-17 are first to be withdrawn, restoration 

towards unabbreviated form proceeding thus far but no farther. 

In writing the dual of a theorem schema or axiom schema, the subscripts 

1 on the bold capital letters to indicate dualization—as we used them, e.g., 

in proving *372—may be omitted, on the ground that every wff is a dual of 

some wff. If verbally stated conditions are attached to a theorem schema or 

axiom schema (as for instance in the case of *305, *306, *339), the conditions 

must be dualized in an appropriate sense; but in most cases with which we 

shall meet in practice the verbally stated conditions are the same as or equiv¬ 

alent to their duals and may therefore be left unaltered.354 

To illustrate the dualization of theorem schemata and axiom schemata, 

we may cite the following examples. The dual of *302 is the theorem schema 

which asserts that 

V B cj: A =) A. 

The dual of *304 is the theorem schema asserting that 

h B <£ A . -A 4: ~B. 

The dual of *305 is *371. The dual of *306 is *330. The dual of *330 is *306, 

’“Besides theorem schemata, we shall somet.mes speak also oUuah 

theorems, in the sense of corollaries of them by 37i, o , * heuristi- 
make this notion more precise, but shall use the termino ogy in 

cally or suggestively. 
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or, more correctly, it is the theorem schema which is an immediate corollary 

of *306, asserting that every instance of *306 is a theorem. The dual of *331 

is *331, i.e., as we shall say, *331 is self-dual. 

Again, the following theorem schemata are, in order, the duals of the 

theorem schemata *336, *337, *338, *339: 

*375. h (3a)(3b)A = (3b)(3a)A. 

*376. h (3a)A = A, if a is not free in A. 

*377. h~(a)A = (3a)~A. 

*378. h (3a)A = (3b)B, if there is no free occurrence of b in A, and no 

free occurrence of a in A is in a wf part of A of the form (b)C, and 

B is $£A|. 

38. Some further theorem schemata. 

*380. h (3a)B z> A = . B zd„ A, if a is not free in A. 

Proof. By dualizing *335, h A cj: (3a)B = (3a) . A c£ B. 

Hence by *377 and P, h A <£ (3a)B = ~(a) . B zd A. 

Then use P. 

*381. I-(a)A zd (3a)B = (3a) . A zd B. 

Proof. By P, h ~A o . A ZD B. 

Hence by generalization and *365, h (3a)~A zd (3a) . A zd B. 

Hence by *377 and P, h ~(a)A zd (3a) . A zd B. 

Also by *302, generalization, and *365, I- (3a)B z> (3a) , A zd B 

Hence by P,3“ 1- (a)A zd (3a)B zd (3a) . A zd B. 

By *306 and modus ponens, A zd B, (a)A I- B. 

Hence by *367, (3a)[Az>B], (a)A h (3a)B. 

Hence by the deduction theorem. H(3a)[AzD B] zd . (a) A zd (3a)B. 

Then use P. 

382. h A zd (3a)B = (3a) . A 3 B, if a is not free in A. 

Proof. By *381, *337, and *342. 

*383. h (a)B zd A = (3a) . B zd A, if a is not free in A. 

Proof. By *381, *376, and *342. 

***The tautology used is ~/> r .q=>r .p=3 q^r. 



206 FUNCTIONAL CALCULI OF FIRST ORDER [Chap. Ill 

*384. h[-ADflC][BDaCj = .ADBDaC. 

Proof. By P,355 -A 3 C, BdC(-AdBdC. 

Hence by P and *306, [~A d8C][B d.CJHAdBd C. 

Hence by generalization, [~A 3, C][B 3a C] b A 3 B 3a C. 

Hence I- [~A 3. C][B 3a Cj 3 . A 3 B 3a C. 

By *306 and P, A 3 B =>a C b -A 3 C. 

Hence by generalization, AdB 3a C I- -A iDa C. 

Again by *306, P, and generalization, A3 B 3a C b B 3a C. 

Hence by P, A 3 B 3a C b [~A 3a C][B 3a C]. 

Hence [A3B3.C3f.A3, C][B 3. C]. 

Then use P. 

*385. b (a)[A v B] = A v (a)B, if a is not free in A. 

Proof. By *335 and P, b (a)[~A 3 B] = . ~A 3 (a)B. 

Then use P and *342. 

*386. b (a)[B v A] = (a)B v A, if a is not free in A. 

Proof. By *385, P, and *342. 

*387. b A =a B 3 . (3a)A = (3a)B. 

Proof. By *340 and *350. 

*388. b A =, B 3 . A = (3a)B, if a is not free in A. 

Proof. By *387, *376, and *342. 

EXERCISES 38 

38.0. For the proof of the deduction theorem, *360, case la, write out 

explicitly the full list of wffs that are to be inserted before A„ 3 Bj. 

38.1. Write the duals of the theorem schemata *383-*388. 

38.2. Establish the theorem schema *365 as a corollary of *333 by dual- 

ization. 

38.3. Similarly establish the theorem schema *387 as a corollary of *334 

by dualization. 
38.4. Similarly establish a corollary of *332 by dualization (in the ex¬ 

pression of which, shall occur only through the abbreviation “(3a) 

for “~(a)~”, and, in particular, shall not occur). 
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38.5. Establish the following theorem schemata of F1: 

(1) H (a)A(a)B = (a). AB. 

(2) f- (a)A(3a)B => (3a) . AB. 

(3) b (a) (3b) [A B] = (3b) (a) . A B. if a is not free in A and b is 

not free in B. 

(4) h (a)(3b)[B z> A] = (3b)(a) . B A, if a is not free in A and b is 

not free in B. 

38.6. A formulation F1' of the intuitionistic functional calculus of first 

order may be given as follows. The primitive symbols are those of F1, with 

such additions to them as to make the existential quantifier primitive as 

well as the universal quantifier, and to supply all the primitive sentence 

connectives of the system Pg (see 26.18). The formation rules are those of 

F1, with the obvious added rules to correspond to the additional primitive 

symbols. The definition of bound and free occurrences of variables must be 

changed so that an occurrence of a in A is bound if it is in a wf part of A of 

either of the forms (Va)B or (3a)B, otherwise free. Of the definition sche¬ 

mata employed in connection with F», only D13, D15, DIG are retained. The 

same abbreviations by omission of brackets are retained, including the same 

convention about the use of heavy dots, and also the abbreviation by omit¬ 

ting superscripts on functional variables. The rules of inference are *300 and 

*301, the same as for F1. The axioms comprise all substitution instances of 

axioms of Pg. and all instances of four additional axiom schemata which, 

with obviously necessary modifications, are the same as *305, *306. *330 
*364.“® 

By the same or nearly the same proofs as for F». the following hold (with 

obvious modifications) also for Fu: a modified form of *311 with theorems of 

P2 taking the place of tautologies of P; *331-*337; *339. Hence show that 
*365 and *340-*342 hold for F1'. 

. i*?'?’ S^,°W that the mle of alPhab€tic change of bound variable, *350, 
holds for F . (Hence *351, *352, *360-*363. *366-*369 hold for Fu by the 
same proofs as for F1.) 

* 330^and' *304 a're to Smoked 5° “ *305' *306' ,33°- *364 are as follows: 
mata; existential Quantifier* read 43 a?,om schemata instead of theorem sche- 

as iavolJrr "°'.T5rdi"g,° bl“ 
variable0 are to be con'trnJi"^1 a * P Vth0 terms free occurrence0 and “free 
F11; and in *300 and *330 the last thf v° mofd,f,^d definition as just given for 
read ^nd no free occurrence^ oTlin Ai, in' / S^(\co^ns is to be altered to 
or (3b)C.° of a in A is in a wf part of A of either of the forms (Vb)C 
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38=8, Assuming the results of the two preceding exercises, as well as 

results obtained in Exercises 26 regarding the intuitionistic propositional 

calculus, establish the following theorem schemata of F1': 

(1) b (3a)~A id ~(a)A. 

(2) b~(3a)A = (a)~A. 

(3) b (3a)—A zd —(3a)A. 

(4) b —(a)A zd (a)—A. 

(5) b (3a)(3b)A= (3b)(3a)A. 

(6) b (3a)A = A, if a is not free in A. 

(7) b (3a)B zd A z> . B z>„ A, if a is not free in A. 

(8) b (3a)[B zd A] zd . (a)B zd A, if a is not free in A. 

(9) b (3a)[A zd B] zd . A id (3a)B, if a is not free in A. 

(10) b (3a)[A v B] = A v (3a)B, if a is not free in A. 

38.9, A formulation F},of the (ordinary, or non-intuitionistic) functional 

calculus of first order may be obtained from F1' by adding the axiom schema, 

A v -A. State and prove an appropriate metatheorem of equivalence be¬ 

tween F}, and F1. (Compare 26.14.) 

38,10- A formulation Flm of the minimal functional calculus of first order 

may be obtained from F1' by omitting the axiom schema -A id . A zd B 

(with no other change). Of the results of 38.6-38.8 regarding F1', extend as 

many as possible to Flm. 

380II- Another formulation, Fjm, of the minimal functional calculus of 

first order may be obtained from F1' by suppressing the primitive symbol 

introducing a new primitive symbol / (a propositional constant), and altering 

accordingly the formation rules, rules of inference, and axiom schemata. 

(The three axiom schemata which involve the symbol ~ explicitly are thus 

omitted; the other axiom schemata and rules of inference remain unaltered 

except in that the notion of a wff has been changed by the change in the 

formation rules; no new axiom schemata or rules of inference are added.) 

Establish the equivalence of Flm and F]m in a sense like that of §23. (Compare 

26.19-) J 
38.12. For every wff A of Fj, let an associated wff A* be defined, by re¬ 

cursion as follows: if A is a propositional variable standing alone, or if A is 



§39] P REN EX NORMAL FORM 209 

of the form f(aj, a2, . .an) where f is an w-ary functional variable or con¬ 

stant and a,, a2, . . an are individual variables or constants, then A* is 

—A; [AdB]* is — [A*=dB*]; [AB]* is ~~[A*B*]; [A v B]* is 

--[A* v B*]; [A = B]* is —[A* = B*]; if C is -A, then C* is -A*; 

if C is (Va)A, then C* is — (Va)A*; if C is (3a)A, then C* is ~~(3a)A*. 

Show that A is a theorem of F), if and only if A* is a theorem of Flm.M7 

(This may be done by showing that the axioms of Fj, have the property 

that the associated wff is a theorem of Flm, and that the rules of inference 

preserve this property.) 

38.13. In a wff of F1 the elementary parts, as defined in §30, are those 

wf parts which have either the form of a propositional variable alone or the 

form f(aj, a2, ..an) where f is an n-ary functional variable or constant 

and alf a* . .a„ are individual variables or constants. Let A* be the wff 

obtained from A by replacing each elementary part E of A by —E. Show 

that A is a theorem of F1 if and only if A* is a theorem of Flm. (Use the 

result of 38.12, together with that of 26.20, and 38.8(4) as a theorem schema 

of Flm, and *342 as a metatheorem of Flm.) 

38.14. Extend the result of 38.13 to wffs A of Flr which do not contain 

either disjunction or the existential quantifier.3*8 

39. Prenex normal form. If (Va)C or (3a)C appears as a wf part 

of a wff A, the scope of that particular occurrence of the quantifier, (Va) 

or (3a), in A is the particular occurrence of C immediately following that 
occurrence of (Va) or (3a).359 

An occurrence of a quantifier, (Va) or (3a), in a wff is initially placed if 

either it is at the beginning of the wff (i.e., with no symbols preceding it, 

w in $UuStan,C? to Kolmogoroff in the paper cited in footnote 210. 
hut A number of further results similar to those of 38.12 38 13 38 14 

HIl^sImrcZT0 tha? minimal funCtional ca,culus of first order,' are in 

compared ^h a^Suk of ge -ninimal functionai calculus of first order, should be 

Ergebnisse It \ G6Ldel> J*g"dmg intuitionistic arithmetic, in his paper in 
&On theUhf™ \5ch‘n Colloquiums, no. 4 (1933). pp. 34^38. ? ? 

and VruShl t We "e h«re us,ng “(3a)” as abbreviation of "~(Va)~”, 

or of (3 ) ^ mean that th* hi°f K' Als° ,n sPeakin6 of an occurrence of (V ) 

occurrenc; of (V^ of on. SpaCC ShaU * fi,led by a variable-so that, e.g . an 
that order, ^e three occurrence ™'imDCe ol cach of the three symbols (. V. ). in 

VasSfiVZstkstand M single symbo1’ a 

and (in F*)Tn Slu“^S^The °J ^ quantlfier « an occurrence of (V ). 
But we shall sometimes find it con ,Ste°t'al Quantifier is an occurrence of ~(V )~. 

operator variable in an occureence^f'the I°°Sel?r* in a waY that includes the 
speak here of occurrences of (Va) airt ^ 0r ex,stential Quantifier. Thus we 

tial quantifiers. And there is a similar °‘ universal and existen- 
ment of *«391 below, and elsewhere h * ParaSraPh of §32. in the state- 
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not even brackets) or it is preceded only by one or more occurrences of quan¬ 

tifiers, (V ) and (9 ), each with its own operator variable.359 

An occurrence of a quantifier, (Va) or (3a), in a wff is called vacuous if 

its operator variable a has no free occurrence in its scope. In the contrary 

case it is called non-vacuous.359 

A wff is said to be in prenex normal form if it has no occurrences of quanti¬ 

fiers otherwise than in initially placed non-vacuous occurrences of (V ) and 

(3 ).359 

Thus a wff A is in prenex normal form if and only if it has the form 

n1n2... n„M, 

where M is wf and quantifier-free, where each II, is either (Va,) or (3a,) 

(* = 1,2,..., n), and where alt aj,..., a„ are variables which are all differ¬ 

ent and which all have at least one (free) occurrence in M. Then the formula 

iijUg... n„ 
is called the prefix of A, and the wff M is called the matrix of A. (As a 

special case, we may have that n = 0; in this case the prefix is the null 

formula, and the matrix M coincides with A.) 

In order to obtain what we shall call the prenex normal form of a wff A, 

we consider the following operations of reduction, applicable to a wff con¬ 

taining quantifiers that are not initially placed: 

(i) If (in left-to-right order) the first occurrence of a quantifier that is 

not initially placed is in a wf part ~(Va)C, where C does not begin with 

then this wf part (i.e., this one occurrence of it) is replaced by (3a)~C. 

Cf. *377. 

(ii) If the first occurrence of a quantifier that is not initially placed is in 

a wf part ~(3a)C, this wf part is replaced by (Va)-C. Cf. *338. 

(iii) If the first occurrence of a quantifier that is not initially placed is 

in a wf part [(Va)C 3 D], this wf part is replaced by 

(3b)[S;C| 3 D], 

where b is either a, in case a has no free occurrence in D, or otherwise the 

first individual variable in alphabetic order after a which does not occur m 

C and has no free occurrence in D. Cf. *350, *383. 

(iv) If the first occurrence of a quantifier that is not initially placed is in 

a wf part [(3a)C 3 D], this wf part is replaced by 

(Vb)[S‘bC| 3 D], 

where b is determined as in (iii). Cf. *350, *380. 
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(v) If the first occurrence of a quantifier that is not initially placed is in a 

wf part [D z> (Va)C], where D is quantifier-free, then this wf part is re¬ 

placed by 

(Vb)[D id SbC|], 

where b is determined as in (iii). Cf. *350, *335. 

(vi) If the first occurrence of a quantifier that is not initially placed is in 

a wf part [D id (3a)C], where D is quantifier-free, then this wf part is re¬ 

placed by 

(3b)[D => S“G|], 

where b is determined as in (iii). Cf. *350, *382. 

**390. By a finite number of successive applications of the reduction steps 

(i)-(vi), any wff A of F1 can be reduced to a wff A' of F1 in which all 

quantifiers are initially placed. This process of reduction is effective, 

and the resulting wff A' is uniquely determined when A is given. 

Proof. At each stage in the process, as long as there are any quantifiers 

not initially placed, one and only one of the reduction steps (i)-(vi) is 

possible and the result of making this reduction step is determined effectively 

and uniquely. It remains only to show that the process must terminate in 
a finite number of steps. 

Let a particular occurrence of one of the signs id or - be called external 

to a particular occurrence of a quantifier if: (1) it is not in the scope of that 

occurrence of the quantifier, and also (2) in case of an occurrence of (V ) 

with an occurrence of - both immediately before and immediately after it 

(or, in other words, in case of an occurrence of (3 ) ) it is not one of those 

wo occurrences of - (which form part of that occurrence of (3 ) ) 

Now each reduction step either diminishes the number of occurrences of 

quantifiers that are not initially placed, or else, while leaving this number 

unchanged, diminishes the total number of occurrences of the signs z> and ~ 

externa! t° the first occurrence of a quantifier that is not initially placed. 

Since both numbers are of course finite in the given wff A, it follows that 

QuanPtTCeSS rndUCtl0n mUSt terminate in the squired wff A' whose 
quantifiers are all initially placed. 
0 

\ °[ P ** reduced to a wff B of Fi in prenex normal 

t ’ m ^ applying the reducti°n process of **390 to reduce A 

deleting all “ ^ *“nti“IS are initiaUy Placed> ^d then 
tmg all vacuous occurrences of quantifiers, (Va) or (3a), in A' 

**391. 
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to obtain B. This process of reduction is effective, and the resulting 

wff B in prenex normal form is uniquely determined when A is given. 

Proof. Obvious as a corollary of **390. 

Definition. The wff B which is obtained from the wff A by the reduction 

process of **391 is called the prenex normal form of A. 

*392. If B is the prenex normal form of A, h A = B. 

Proof. At each step of the reduction process of **390, the wff obtained is 

equivalent to the previous wff, in the sense that the material equivalence of 

the two wffs is a theorem of F1. Thus by the transitive law of equivalence, 

h A = A'. Again, in the reduction of A' to B by deleting vacuous occurren¬ 

ces of quantifiers, the deletions may be performed one by one, and at each 

step the wff obtained is equivalent to the previous wff. Therefore, by the 

transitive law of equivalence, f- A = B. 

The derived rule *341 here has to be used at each step, in establishing the 

equivalence of the wff obtained to the previous one. Given *341, the re¬ 

quired equivalence follows, in the case of reduction step (i), by *377; in the 

case of reduction step (ii), by *338; in the case of (iii), by *350 and *383; 

in the case of (iv), by *350 and *380; in the case of (v), by *350 and *335; 

in the case of (vi), by *350 and *382; in the case of deletion of a vacuous 

occurrence of a quantifier, by *337 or *376. 

Although the prenex normal form of a wff is unique, as we have here 

defined it, and although a wff is always equivalent to its prenex normal form 

(in the sense that the equivalence is a theorem of F1), it is not true in general 

that, if two wffs are equivalent to each other (in this sense), they therefore 

have the same prenex normal form. Counterexamples are obvious, and are 

left to the reader. 

EXERCISES 39 

39.O. Find the prenex normal form of each of the following. 

(1) — [y)F(y, z) =>t ~~(3x)G(x, V.2) 

(Answer: (z)(3x1)(3x).~~ir(*1, z) 3 G{x, y, z).) 

(2) (y)F{x,y)ZD{y)F{x,x) 

(3) F(y) 3V ~ . (x)G(x, y) 3 (y)~F(y) 

(4) F(x)v~(y)F{y) 

(6) (3x)F(x, y, z) = (y)G(x, y, z). 
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39.1. Show that the matrix of the prenex normal form of a wff differs 

from the associated quantifier-free formula (in the sense of §32) at most 

by changes in the individual variables at certain places, and deletions of 

double negations 

39.2. A formulation of the functional calculus of first order is to have 

negation, conjunction, and disjunction as its primitive sentence connectives, 

and the universal and existential quantifiers as its primitive quantifiers. 

Otherwise the primitive symbols are to be the same as for F1. (1) Write the 

formation rules for this formulation of the functional calculus of first order. 

(2) Given that the rules of inference are generalization (*301) and modus 

ponens (in the form, from ~A v B and A to infer B), supply suitable axiom 

schemata—making them as few and as simple as feasible—and then dem¬ 

onstrate equivalence of the system to F1 in an appropriate sense. 

39*3* Extend the definition of full disjunctive normal form (see exercise 

24.9) to quantifier-free formulas of the system introduced in 39.2. Show for 

this system that, if A and B are quantifier-free, then 1- A = B if and only 

if A and B either have the same full disjunctive normal form or both have 
no full disjunctive normal form. 

39.4. Define prenex normal form in an appropriate way for the system of 

exercise 39.2, and demonstrate analogues of **390, **391, *392. 

39*5* In the system of exercise 39.2, if the propositional variables are 

included among the primitive symbols, let a wff be said to be in prenex- 

dtsjunctive normal form if either it is p ~p or: (I) it is in prenex normal form, 

and (II) the variables in its prefix are, in order of their occurrence in the 

prefix, and for some n, the first n individual variables in alphabetic order, 

and (III) its matrix is in full disjunctive normal form. (1) Establish meta¬ 

theorems about reduction to prenex-disjunctive normal form, analogous to 

ose of 39.4 about reduction to prenex normal form. (2) Answer the ques¬ 

tion whether it is true in general that, if V A = B. then A and B have the 
same prenex-disjunctive normal form. 

39-6. In the case of the singulary functional calculus of first order with 

primitive bas.s as given in §30 (i.e., in the formulation F»), the process of 

ringing quantifiers forward by means of the reduction steps (i)-(vi) of 

are^d “(aU ^ The foUo™e reducti°" steps 
,,, / 1 1 delete a vacuous occurrence of a quantifier (3a) or (Va)- 

iy -^c“fair,Partt (3a)'aCby'(Va)C; “> t0 rePlace a wf part (Va^C 
(3a) C 4 n b “ ™med'ateIy preceded by «D to replace a wf part 
by (3a)C J J, 1 a)C 3 (3a)DJ; <e) to rePlace a wf part (Va)(C => D] 

y t(3a)C => D], if a is not free in D; (f) to replace a wf part (Va)[C z> D] 
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by [C 3 (Va)D], if a is not free inC; (g) to replace a \vf part (Va)[[Cj 3 C2] 

Id D] by ~[(Va)[~C1 3 D] 3 ~(Va)[C2 3 D]]. By a series of applications 

of these reduction steps, together with steps which consist either in a 

transformation of a wf part by means of propositional calculus (and *342) 

or in an alphabetic change of bound variable, show that every wff A of 

the singulary functional calculus of first order, F1,1, can be reduced to a 

wff B such that: (1) the only occurrences of quantifiers in B are in wf parts 

of the form (Vx) . Dj 3 . D2 3 .... Dn_x id Dn, where n may be 1 or great¬ 

er,380 and where each D, separately is either f,(x) or ~tt(x), the functional 

variables flf f2, ..fn being all different in the case of any one particular 

such wf part of B;381 and (2) hA = B.382 

39.7. Apply the reduction process of the preceding exercises to the follow¬ 

ing wffs of F1,1: 

(1) (3x) (y) . F(x) zd G(x) zd . G(x) 3 H(x) zd . F(y) 3 H(y) 

(2) (3x)(y)(z) . F(x) 3 G(y) 3 H(x) 3 . F(z) 3 G(x) 3 H(z) 

(3) F(x) zdx . F(y) 3v [G(x) zd G(y)] v (z)F(z). 

39.8. For a formulation of the singulary functional calculus of first order 

with primitive basis as in 39.2, supply the analogue of the reduction process 

and the metatheorem of 39.6. (In order to simplify the statement of the 

reduction process, make use of the full disjunctive normal form cf. 39.3 

and its dual, the full conjunctive normal form.) 

39.9. For a formulation of the functional calculus of first order, let the 

primitive symbols be as described in exercises 30.6. And let there be two 

rules of inference, as follows (a and b being individual variables): from 

A |a . B |b C and A to infer C, if b is not free in C; from A |, B to infer 

$“A| |b $JB|, if no free occurrence of a in A or B is in a well-formed part of 

the form C |b D. Find axiom schemata (seek to make them as few and as 

simple as possible) such that the system becomes equivalent to F1 m an 

appropriate sense, and cany the development far enough to establish this 

equivalence. (Use may be made of results previously obtained regarding the 

propositional calculus, including those of exercises 25.) 
39.10. Establish the equivalence to P, in an appropriate sense, of the 

»‘°In case v is 1. the wf part of B in question is simply (V*)D„ i.e.. either (V*)f,(*) 

***BuCthe same functional variable or some of the same functional variables may 

occur in two or more different such wf parts of in Mathe- 
■••The result of this exercise is due to Hei°"ch Behmann P P’ 

matische AnnaUn. vol. 80 (1922). pp. 16^-229 (see especially pp. 190-19U- 
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following system F*b. The primitive symbols are the same as those of F1 

with the two additional primitive symbols, 3 and The wffs are of two 

kinds, terms and sentences. Namely, the terms are given by the same forma¬ 

tion rules as those of F1, with “wff” replaced by “term” (and “wf” by “a 

term”) throughout, together with one additional rule: if T is a term and a is 

an individual variable, then (3a)T is a term. The sentences are all formulas 

IV r2, ..., I\,-> A; where n is any natural number (not excluding 0), and 

rx and r2... and T„ and A are terms. Thus no wff contains more than one 

occurrence of and a wff is a sentence or a term according as it does or 

does not contain an occurrence of In a term, an occurrence of a variable 

a is bound if it is an occurrence in a wf part of either of the forms (Va)B or 

(3a)B; otherwise free. In a sentence all occurrences of variables are bound. 

There is one axiom schema, namely A -> A, where A is a term. And the rules 

of inference are the eleven following, where A0, Ax, A2.A„, A. B, C are 

terms, and a is an individual variable, and b is an individual variable or an 

individual constant: (I) from A„ A2.A„-* B to infer A* Ax, A2, . .., 

An*~* (H) from Aj, A2, ..Ak_x, At, At+1, At+2, .. ., An—► B to infer 

A*’A*.Afc-i* A*+i* Ak, At+2.An—* B; (III) from Alf Ax, Aa. 

An”*B to infer A„ A2.A„-».B; (IV) from Ax. A2.An—► B to 

infer Ax. At.A^-*. An Z5 B; (V) from Ax, A2.An—► A z> B and 

Al> A*.A»-> A to infer Ax. A2.An-+ B,™ (VI) from Ax, A.. 

B and Alt A2.An—► -B to infer Ax, A2.An_x—► ~An; "(VII) 

from Al( A2, ..An—*.~~B to infer Alt A2.An-+ B;3« (VIII) from 

A„ A2, . .An-» A to infer Ax, A2,..., An-> (Va)A. if a is not free in 

Ax, A ., An;3M (IX) from Alf A2.An-> (Va)A to infer Ax, A2. 

An -* 5bA|, if no free occurrence of a in A is in a wf part of A of either of 

the fonns (Vb)C or <3b)C;»* (X) from A,, A.A„^$;A| to infer 

1. A*...An-> (3a)A, if no free occurrence of a in A is in a wf part of 

A of either of the forms (Vb)C or (3b)C;>« (XI) from A„ Aa.A„ — B 

(A 1',A*.A"-" B’ if a is not free in A„ A,.A 
“ „ (As a first step toward establishing the desired equivalence show tha't,' 

B bv'VT term,03 f,b and ® “ ‘he corresP°ndin6 *ff »f F», obtained from 
B W replacmg (3 ) everywhere by -(V )-. then —e B is a theorem of F>„ 
if and only if B' is a theorem of F>.) gb 

39>IIt A1S°eStabUsh the ^^valence to F». in an appropriate sense, of 

e0XClUded* i e - fr0m -B to infer A-*B 

to wS?StodS,f«StaotS if?ScS?nt*5n*S CalCUU NK and LK Calculus, 1935-1930). W,Ul modlflcation due to Bernays (Logical 
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same the following system F*.388 The primitive symbols and the terms are the 

as those of F*b (see the preceding exercise). The sentences (“Sequenzen”) are 

all formulas rlt r2.r„-> Aj, a2, ..., where m and n are natural 

numbers (not excluding 0), and I\ and T2... and Tn and Ax and A2... 

and A,, are terms.387 Thus no wff contains more than one occurrence of — 

and a wff is a sentence or a term according as it does or does not contain 

an occurrence of —Free and bound occurrences of variables are defined as 

in the preceding exercise. Again there is one axiom schema, A—*A, 

where A is a term. And the rules of inference are the following, where 

Ao. A1( A,, .... An, B0, Bj, B2, . .Bm, A, B, C are terms, and a is 

an individual variable, and b is an individual variable or an individual 

constant: 

la. From Alf A2,..., An—► Bj, B2,..., Bm to infer A<,, Alf A,,..An-> 

B1, B2.Bm.388 

lb. From Aj, A2,..An—► Bj, Bt,..., Bm to infer Aj, A2,..., A„—► 

B0, Bj, B2.Bm.388 

Ha. From A1( A,,..AH, Ak, Ak+1, Ak+1,..A„-* Bj, B2,..Bm to 

infer Ax, A2,..Ak_j, At+1, Ak, Ak+2,..., An-> Bj, Bt,..Bm.*8* 

lib. From A1( Aj, ..., An-* Bj, B2,..B,_1( B,, B{+1, B,+t, • • •» Bm to 

infer Ak, Aa,..., A„ -► B1( B2, ..., B,_j, BJ+1, B,, B,+t,..Bm.w0 

Ilia. From A„ Alf A„ ..An-*Bj. B,.Bm to infer Aj, A,.A„-> 

Bj, Bj, Bm.389 

Illb. From A1( A2...., An-» Bj, Bj, B2.Bm to infer Aj, A* .. 

An—> Bj, Bj.Bm.870 

IVa. From Av At,..A* —► B to infer Alf A,,..An~x ""**-*. 

I Vb. From Av A*,..A* -► A and B-► Bp Bf,..Bm to mfer Alf 

Aj,..A„, A 3 B —► Bj, Bt,..Bm.888 

Va. From Ax, A*,.... A.-* Bj, B„ ..Bm to infer Aj, A*-- 

~^-n> Bj, B„..Bm.888 a A A. 
Vb. From Aj, A2,.... A.- Bj, Bt,..., Bm to mfer A». A* .... A* 

'•'Bj —► B2, Bj, ..B*.870 . /VftlA if a is 
Via. From Ax, A*,...» A, —► A to infer Aj, A*,..K, (V ) 

not free in Ak, Aj,..., A,.870 

-This is Gentzens’ calculus LK. with « 
were not adopted by Gentzen because he wish ... Compare the discussion of 
possible between LK and the intuitiomstic calculus LJ). Compare tne 

Gentzen’s methods in §29. ^ . «-ntence. 
*«In particular, the arrow standing alone constitutes a sente 
“•Here m or « or both may be 0. 
“•Here m may be 0. 
,70Here n may be 0. 
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VIb. From B-» B,. B,.Bm to infer (3a)B—► Bj, Bs.Bm. if a 

is not free in Bj, B2, ..Bm.s6B 

Vila. From $£A|-+ B1, B2.Bm to infer (Va)A-* B,. B2.Bm, 

if no free occurrence of a in A is in a wf part of A of either of the forms 

(Vb)C or (3b)C.389 

Vllb. From A1( At.An-». $JA| to infer A,, A2.An-». (3a) A, if 

no free occurrence of a in A is in a wf part of A of either of the forms (Vb)C 
or (3b)C.370 

VIII. From Av A2.At-* C. B1, B2.B, and A*+1. At+2.An. 

B». Bm.Bm to infer Alf A2.An-* Bj, B2,. .Bm.37i 

39.12. Establish the equivalence to Fj of the system Fjh obtained by 

replacing the rule of inference VIII by the inverses of the two rules Va and 

Vb, and adding a rule of alphabetic change of bound variable—in the 

sense that the theorems of the two systems are identical.371 

w!Sfre-W£ may “ sPecial cases any or all of k = 0. / = 0, k = n / = m 

we hav'e IL^i^he . " 1°' f** “ mod,(ied to con{°™ to changes which 
appU^on of VIII frnm ^ u meth0d 13 to show first how to eUm.nate an 
list steo of / li SUch an application occurs only once and as the 
A? St'P of the Pf°°f* «* C a not identical with any of the tenns B2. B* ... B, 
in Vk- • *' ' ' " *'• Thls 1S not done ,n one step, but rather the application of VTTT 

Srto KC” r'kPla“d ty 0,,e " »PPu“t>»M »( TOI wh?S.S.° 

renew of the = 'Z V T £££ STiT °Umb,!r °‘ °“”r‘ 



IV. The Pure Functional Calculus of First Order 

40. An alternative formulation. In the case of a functional calculus 

of first order having a sufficient apparatus of variables, a formulation is 

possible, as already remarked, in which rules of substitution are used (in 

addition to the rules of modus ponens and generalization) and the axiom 

schemata of §30 are replaced by basic instances of them—so that the number 

of axioms is then finite. In this section we give such a formulation, FgP, of 

the pure functional calculus of first order. 

The primitive symbols are the eight improper symbols listed in §30, the 

individual variables, the propositional variables, and for each positive inte¬ 

ger n the n-ary functional variables. The formation rules, 40i-v are the same 

as 30i-v except that the references to functional constants and individual 

constants in 30ii are deleted. The same abbreviations of wffs are used as 

described in §30, including the definition schemata D3-17. The rules of 

inference are the following: 

*400. From A 3 B and A to infer B. {Rule of modus ponens.) 

*401. From A, if a is an individual variable, to infer (a)A. 
{Rule of generalization.) 

*402. From A, if a is an individual variable which is not free in N and b 

is an individual variable which does not occur in N. if B results 

from A by substituting SjN| for a particular occurrence of N in A, 

to infer B. {Rule of alphabetic change of bound variable.) 

*403. From A, if a and b are individual variables, if no free occurrence of 

a in A is in a wf part of A of the form (b)C. to infer SbA|. 

{Rule of substitution for individual variables.) 

•4040. From A, if p is a propositional variable, to infer $baI- 
{Rule of substitution for propositional variables.) 

•404 . From A, if f is an n-ary functional variable and x1( x,..... x„ are 

distinct individual variables, to infer 

•".*-)A| {Rule of substitution for functional variables.) 
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The axioms are the five following: 

f405. ,q=>p 

|406. szD[pZDq}z>.s=>pzD.s zd q 

|407. ~p ■=> ~q Z=> . qP 

|408. p ZDX E(x) => .p=> (x)E(x) 

f409. (z)F(z) ZD F(y) 

From results obtained in the preceding chapter (especially §35), there 

follows the equivalence of the systems FgP and Flp in the sense that every 

theorem of either system is a theorem also of the other. Hence also the de¬ 

rived rules of Flp which were obtained in the preceding chapter may be 

extended at once to the system Fjp. 

The developments of the following sections (§§41-47) belong to the theoret¬ 

ical syntax of the pure functional calculus of first order, and—except the 

results of §41, which concern the particular formulation F^1*—they apply 

to the pure functional calculus of first order indifferently in either of the 

formulations Flp or F£p. Many of the results can be extended to other func¬ 

tional calculi of first order, some even to an arbitrary functional calculus of 

first order in the formulation F1. But we shall confine attention to the pure 

functional calculus of first order, leaving it to the reader to make such 

extensions of the results where obvious. 

We remark that the method of the present section, for obtaining a for¬ 

mulation of the functional calculus of first order in which the axiom sche¬ 

mata of F1 are replaced by a finite number of axioms, can be extended to 

any case in which functional variables of at least one type are present. 

Namely, the appropriate changes are made in the list of primitive symbols 

and in the formation rules. The rules of inference remain the same except 

that: (1) if individual constants are present, the appropriate changes are 

to be made in *403 and *404n to allow for them (as in *351 and *352„); and 

(2) if any of the rules *404n become vacuous, they may be omitted. The 

five axioms remain the same as in F,[p if the required variables are present, 

and otherwise they receive an obvious modification. 

In particular, for any positive integer m, a formulation Fj*" of the m-ary 

functional calculus of first order may be obtained from Fgp by merely 

omitting from the list of primitive symbols all functional variables which 

are more than m-ary and omitting all the rules *404n for which n > m. 

This formulation of the m-ary functional calculus of first order is easily 
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seen to be equivalent (in the sense that the theorems are the same) to the 

m-ary functional calculus of first order in the formulation F1,m of Chapter III. 

EXERCISES 40 

40.O. Show that the theorems of the singulary functional calculus of first 

order are identical with those theorems of the pure functional calculus of 

first order in which all the functional variables are singulary. 

40.1. In the system FgP show that, without changing the class of theorems, 

the rule of generalization and the axioms f408 and f409 could be replaced 

by the two following rules of inference: from Ad B, if a is an individual 

variable which is not free in A, to infer A z> (a)B; from A r> (a)B, if a is 

not free in A, to infer A 3 B. 

40.2. For a formulation of the extended propositional calculus with prim¬ 

itive symbols as indicated in exercise 30.7, let the rules of inference be 

modus ponens, the rule of substitution (for propositional variables), and the 

two rules introduced in 40.1 as these are modified by taking a to be a prop¬ 

ositional variable rather than an individual variable. And let the axioms 

be the same as the three axioms of Pg. Carry the development of the system 

far enough to establish a solution of its decision problem along the lines 

suggested in §28.*°° (Make use of the result of 18.3.) 

40.3. In a partial system of extended propositional calculus, with 

primitive symbols as in 30.7, rules of inference modus ponens, generaliza¬ 

tion, and substitution, the two axioms of P+, and axiom schemata (a)A n A, 

and (a)[bD A]D.bD (a) A where b is not a, show that under suitable 

definitions of conjunction, disjunction, equivalence, and negation the entire 

intuitionistic propositional calculus is contained. (See 19.6.) 

41. Independence. From the equivalence of F2P and Flp it is easily 

seen that the rules *4042, *4043, ... of F*p are non-independent. For by 

means of the rules *402, *403, *4040, *404! it is possible to infer an arbitrary 

instance of one of the five schemata *302-*306 from the corresponding one 

of the five axioms f405-f409. 

Though not independent, the rules *404. (n > 1) are nevertheless in » certain 

sense not superfluous, since they restrict the class of sound interpre 01^s 

Fip. Indeed an interpretation which is like the principal interpretation 0 

except that functional variables with superscript greater than 1 are in rpre 

as functional constants (each one corresponding to a particular proposi 

function of individuals) is a sound interpretation of the system pf, an o 

40°These axioms and rules of inference for the extended calculus are given in the pape 

of footnote 243, where they are credited to Tarski. 
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system obtained from F|p by deleting the rules *404„ (« > 1), but is not a sound 

interpretation of F|p itself. 

The need for the rules *404n (n > 1) may be seen from a syntactical 

standpoint if Fgp is thought of not as a self-sufficient system but as a system 

to which undefined terms and postulates are to be added in order to develop 

some special branch of mathematics by the formal axiomatic method (as 

described in the concluding paragraphs of §07). For such an added postulate 

may well contain, e.g., a binary functional variable in such a way that *4042 

must be used in making required inferences from it. 

Except *404n (n > 1), the rules and axioms of F^ are independent. We 

go on to indicate briefly how this may be established. 

Consider a formulation of the propositional calculus in which the rules of 

inference are substitution and modus ponetis, and the five axioms are f405, 

t406, f407, p id r id .piDr, and r id r. Here the last two axioms are afps of 

|408 and |409 respectively, in the sense of §32. Hence from a given proof of 

any theorem A of F£p upon replacing each wff in the proof by a suitably 

chosen afp of it, we obtain a proof of an afp A<, of A as a theorem of this 

formulation of the propositional calculus. By the methods of §19 we may 

show, for this formulation of the propositional calculus, the independence 

of the rule of modus ponens and of each of the axioms |405, f406, f407. 

There follows, for F2P, the independence of each of *400, |405, |406. f407. 
(Details are left to the reader.) 

Consider the transformation upon the wffs of F*p which consists in re¬ 

placing all occurrences of (Va) by ~(Va)~, simultaneously for all individual 

variables a. I.e., briefly, consider the transformation which consists in re¬ 

placing the universal quantifier everywhere by the existential quantifier. 

It may be verified that this transforms every axiom of F*p except |409 

into a theorem of F‘p; and. in an obvious sense, it transforms every primitive 

e of inference of F‘p into a primitive or derived rule of Fjp. But t409 is 

transformed into (3x)F(x) id F(y). which is not a theorem. (If h (3x)F(x) id 

(y). then, by *330 and P, h F[x) id F(y), contrary to **324.) The inde¬ 
pendence of f409 follows. 

Consider the transformation upon the wffs of F|p which consists in re¬ 

placing simultaneously every wf part of the form (Va)Cby (Va)~[C id Cl «oi 

This transforms every axiom into a theorem, and every primitive rule of 

__f^ceexcept 401 (the rule of generalization) into a primitive or derived 

formed*intaTuself^and^if CVCIJ (luanti0er-free formula is trans- 

CC = D] is G;and D' -P-tively. then 
transformed into (Va)~[C' => C']. J' ^ transformed into ~C', and (Va)C is 
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rule. On the other hand it transforms the theorem F(x) z>x F(x) into the 

non-theorem (x)~ . F(x) 3 F(x) 3 . F(x) 3 F(x). There follows the inde¬ 

pendence of *401. 

Consider the transformation upon the wffs of F|p which consists in re¬ 

placing (Va) by ~(Va)~ whenever a is a different variable than x. This 

transforms every axiom into a theorem and every primitive rule of inference 

except *402 (the rule of alphabetic change of bound variable) into a primi¬ 

tive or derived rule. It transforms the theorem (y)F(y) 3 F(z) into the 

non-theorem (3t/)F(y) 3 F(z). There follows the independence of *402. 

Consider the transformation upon the wffs of Fgp which consists in re¬ 

placing every wf part of the form (Va)C by S“C|. (Or, as the transformation 

may also be described, every bound occurrence of an individual variable in 

the wff is replaced by the particular individual variable y, and then (Vy) is 

omitted wherever it occurs.) This transforms every axiom into a theorem 

and every primitive rule of inference except *403 (the rule of substitution 

for individual variables) into a primitive or derived rule. It transforms the 

theorem (x)F(x) 3 F(z) into the non-theorem F(y) 3 F(z) (cf. §32). There 

follows the independence of *403. 

Consider the transformation upon the wffs of which consists in omit¬ 

ting ~ wherever it occurs and at the same time replacing p everywhere by 

[p 3 p]. This transforms every axiom into a theorem and every primitive 

rule of inference except *4040 (the rule of substitution for propositional 

variables) into a primitive or derived rule. It transforms the theorem 

3 q 3 q into the non-theorem q 3 q 3 q (**320). There follows the inde¬ 

pendence of *4040. 

Consider the transformation upon the wffs of FgP which consists in 

replacing F(a) throughout by [F(a) 3 F(a)] (for every individual variable 

a, but only for the one functional variable F1) and at the same time replacing 

(Va) throughout by ~(Va)~ (for every individual variable a). This trans¬ 

forms every axiom into a theorem and every primitive rule of inference 

except *404j (the rule of substitution for singular}' functional variables) 

into a primitive or derived rule. It transforms the theorem (x)G(x) 3 C(y) 

into the non-theorem (3x)G(x) 3 G(y). There foUows the independence of 

*404!. 
Finally, to establish the independence of t408 we use a more ela ra e 

transformation upon the wffs of F>p, which is described in steps as follows 

First replace every individual variable by the individual variable next 

following it in alphabetic order, i.e., replace simultaneously x by y, y y *• 

* by and so on. Then change simultaneously every propositional variable 
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to a singulary functional variable and every n-ary functional variable to an 

(n -f l)-ary functional variable in the following way: a propositional vari¬ 

able a is to be replaced by b(x), where b is the singulary functional variable 

having the same alphabetic position as a (i.e., if a is the i‘th propositional 

variable in alphabetic order, then b is the *th singulary functional variable 

in alphabetic order); and, a being an n-ary functional variable, each wf 

part a(c„ c2-- cn) is to be replaced by b(Cj, c2,. .c„, x) where b is the 

(n + l)-ary functional variable having the same alphabetic position as a. 

Then in every wf part having the form of an implication [A Z3 B] prefix an 

existential quantifier ~(Vx)~ to the antecedent A and to the consequent B 

(i.e., change [A ^ B] to [~(Vx)~A z> ~(Vx)~B]), and at the same time 

change every universal quantifier (Va) to (Va)(Vx), and change - every¬ 

where to (Vx)~. 

The result of applying this transformation to |408 is 

(1) (3x)[(3x)F(x) idwz (3x)F(y, x)] z> (3x). (3x)F(x) (3x) (y) (x)F(y. x), 

which is not a theorem of Falp. On the other hand, application of this trans¬ 

formation to the remaining axioms of Fgp yields, in order, 

(2) (3*)F(x) => (3x). (3x)G(x) =3 (3x)F(x), 

(3) (3x)[(3x)F1(x) 0 (3x) . (3x)F(x) => (3x)G(x)] => (3x) . 

(SxJ^xJF^x) => (3x)F(x)] => (3x) . (SxJF^x) id (3x)G(x), 

(4) (3x)[(3x)(x)~F(x) =3 (3x)(x)~G(x)} 3 (3x) . (3x)G(x) Z3 (3x)F(x). 

(5) (3x)(y)(x)F(y,x)z3 (3x)F(z,x), 

which are theorems of F£p. 

Moreover, by this transformation every primitive rule of inference of Flp 

is transformed into a primitive or derived rule. (In order to show this in the 

cas* of *400, it is necessary to make use of the fact, which is a corollary of 

320. that no theorem of F’p fads to contain an implication sign, and hence 

h k,° hrCm °f F*P I$ transformed into a wff containing x as a free 
variable.) The independence of f408 follows. 

EXERCISES 41 

** •°' In °rder to “n>P'ete the proof of independence of |408 as described 

^dSr y( r °f‘he d“(!) is a non-theorem of 

st tnUon f„ r T-‘ ’ V emS- (F°r the first P^*' of sub- 

rem, then W TnV procMd by sho^"« ‘hat, if (1) is a theo- 
( ) 3 G(y) is a theorem, contrary to **324.) 
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41.1. Following Godel, prove the independence of f408 by means of the 

transformation upon wffs of FgP which consists in replacing every wf part 

of the form (Va)f(a), where a is an individual variable and f is a singulary 

functional variable, and also every wf part of the form (Va)b, where a is 

an individual variable and b is a propositional variable, by [p cj: />]. 

41*2. Following the analogy of §40, and using the same rules of inference 

*400-*404n as in §40, reformulate the system F11 of exercise 38.6 as a pure 

intuitionistic functional calculus of first order Fg'p with a finite number of 

axioms. Discuss the independence of the axioms and rules of F£‘p. (Use may 

be made of the results of 26.18, 36.6-38.8, and §41.) 

41.3. Investigate the independence of the axioms and rules of the for¬ 

mulation of the extended propositional calculus which was introduced in 

exercise 40.2. 

42. Skolem normal form. A wff402 is said to be in Skolem normal form 

if it is in prenex normal form without free individual variables and has 

a prefix of the form 

(3a1)(3a2)...(3am)(b1)(b2)...(bn), 

where m ^ 1 and n 0. In other words, a wff in prenex normal form is 

in Skolem normal form if it has no free individual variables and its prefix 

contains at least one existential quantifier and every existential quantifier 

in the prefix precedes every universal quantifier.403 

In order to obtain what we shall call the Skolem normal form of a wff A, 

we apply the following reduction procedure: 

i. First reduce A to its prenex normal form B by the method of §39. 

ii. If Cj is the first in alphabetic order of the free individual variables 

of B, prefix the universal quantifier (VCj) to B. Repeat this step until B 

has been reduced to a wff Cj which is in prenex normal form without free 

individual variables. (Thus Cj is (cu)(cu_j) .. . (Cj)B, where Cj, c2,..., cu 

are the free individual variables of B in alphabetic order. Of course u may 

be 0.) 

iii. If Cx is in Skolem normal form, let C be the same as C2. 

iv. If Cj has a null prefix (this will be the case if Cj is a wff of P), let C 

be(3z) . F(z) id F(x) => C2. Then C is in Skolem normal form. 

«°*In SS42-47 "wff” shall mean “well-formed formula of the pure functional calculus 
of first order in either of the formulations F»p or F”" except where the contrary is 

indicated by using the explicit wording "wff of” such and such a syste' ■ 

«*When we refer to the universal quantifiers in the prefix, we mjaiJ on y • ^ 
versal quantifiers which are without * before and after i.e.. aophS 
quantifiers which occur as parts of the existential quantifiers (D14). This rema pp 

here and at various places below. 
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v. Except in the cases iii and iv, Cx must have the form 

(3ai)(3a2) ... (3at)(a*+1)N1( 

where k ^ 0, and Nt is in prenex normal form and has a2, a2, . .at+1 

as its only free individual variables. Let fx be the first (k + l)-ary functional 

variable in alphabetic order which does not occur in Gx. Let C2 be the prenex 

normal form of 

(3ai)(3aJ) ... (3afc) . a2, ..afc+1)3 zd 

(afc+l)^l(ai> a2- • • •» a*+x)- 

Then, if C2 is in Skolem normal form, let C be the same as C2. Otherwise 

repeat the reduction. I.e., C2 has the form 

(3aj)(3a2) ... (3afc/)(a1^+1)N2, 

where k' > k, and N2 is in prenex normal form and has a2. a2.a*,+1 as 

its only free individual variables. Let f2 be the first (A' + l)-ary functional 

variable in alphabetic order which does not occur in C2. Let C3 be the prenex 
normal form of 

(3a,) (3a.) .. . (3a,,) . (ar«)[N, = (,(a„ a.a„+1)] =, 

l)^2(ai» a2» • • •* afc/+l)« 

Then, if Cs is in Skolem normal form, let C be the same as C3. Otherwise 

repeat the reduction again, reducing C3 to C4; and so on until a wff Cn_l+1 

in Skolem normal form is obtained, which is then C. We shall see that"c is 

Cn-i+1. where / is the number of universal quantifiers which occur at the end 

of the prefix of Cj, after the last existential quantifier, and where n is the total 

number of universal quantifiers in the prefix of C2 (which is in fact the 
same as that in the prefix of C). 

••420. Any wff A can be reduced to a wff C in Skolem normal form by 

the procedure just described in i-v. This process of reduction is 

effective, and the resulting wff C in Skolem normal form is uniquely 
determined when A is given. 

Proof In the senes of reductions described in v, by which C, is reduced to 

fw ‘ ”, S° the effect on the Pref“ “ ««h steP is to change the 
fast universal quantifier to an existential quantifier and at the same time to 

h .. , (3ai,(3*«) • ■ • (3®»)(3a^)n,n,... IL(b,+1) 

individual 'vwiabh^in9 iSfcft? gfSX Z” 
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add a universal quantifier at the end of the prefix (without other change in 

the prefix).404 Thus at each step the number of universal quantifiers is re¬ 

duced by 1 which occur in a position preceding any existential quantifier. 

The series of reductions must therefore terminate in a wff C in Skolem nor¬ 

mal form. The remaining part of the theorem is then obvious. 

Definition. The wff C which is obtained from the wff A by the procedure 

described in i-v is called the Skolem normal form of A. 

*421. If C is the Skolem normal form of A, then h A if and only if I- C. 

Proof. We continue to use the same notations as in the statement of i-v 

above. 

By *392, h A = B. Hence by P, HA if and only if h B. 

By *301 and *306—else by *401, f409, and *404,—h B if and only if 

I- C,.405 

If C is obtained by iii, then C is the same as C,. Hence h A if and only if 

bC. 

In case C is obtained by iv, we have by P: 

1-0,= . F(x) => F(x) => C,. 

Hence by generalizing upon x and then using *388, since C, is without free 

individual variables, we have: 

b C, = (3x). F(x) z> F(x) => C,. 

I.e., b C, = C. Hence by P, b C, if and only if b C. Hence b A if and only if 

bC. 

Finally we consider the case that C is obtained by v. We must show that 

b C, if and only if b C2; b C2 if and only if b C,;..b Cn_{ if and only if 

b Cn_,+1. Since C is the same as Cn_,+„ it will then follow that b A if and only 

if bC. 

We state in detail the proof that b C, if and only if b C2. The proofs that 

b C2 if and only if b C3, and so on, are precisely similar—the argument may 

therefore be completed by mathematical induction, a step that is left to 

the reader. 

By *306 (cf. footnote 405) and P, 

(afc+,)N, b N, z> f,(a„ a2>..a*+1) => a2,..*M)- 

Hence by generalization upon ak+1, and *333, 

-The axiom schemata of F«p are, with obvious modification in 

schemata of F>p. And we shall hereafter use them by number in 0 

we use the numbered theorem schemata of F»p as being at the same time tneore 

mata of F>p). 
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(a*+i)Ni y Z3 a2> . .afc+1)] Z5 (at+1)f1(a1, a2, . . ak+1). 

Hence by *367, 

(3a!)(3a2)... (3ak)(ak+1)N, h (SaJ^aj) ... (3ak). 

(®k+l)[^l ^ a2* • • •• ak+l)] ^ (ak+l)^l(ai- a2> • • •< afc+l)- 

Hence by *392 and P, Cj h C2. Hence if f- Cj then b C2. 

Now suppose that h C2. Then by *392 and P, 

y (3ax)(3a2) ... (3ak) . (ak+1)[N, r> f^a,. a2» • • •* a*+l)] ^ 

(ak+l)^l(ai» a2» • • •> aAr+l)* 

Hence by the rule of substitution for functional variables, substituting 

Nx for fx(alt at. . . a*+1), we have: 

H (3ai)(3a,) ... (3a,). (a,+1)[N, => N,] => (a,+1)N,. 

Now by P and generalization, h (a,+1)[N, =3 N,]. Hence by modus ponens, 

(a*+i)[N, = N,] => (a,+1)N, h (a,+1)N,. 

Hence by *367, 

(3ax)(3aa) ... (3ak). (a^KN, z> N,] zj (a^JN, I- 

(3a1)(3a2)...(3ak)(ak+1)N1. 

Therefore H (3ai)(3a2) ... (3ak)(ak+1)Nl. I.e., I- Cv 

43. Validity and satisfiability. The rules a-f, given in small type 

in §30 as semantical rules determining a principal interpretation of Fip, may 

be modified or reinterpreted in such a way as to give them a purely syn¬ 
tactical character. 

.. Namdy' m.the statement of these rules in §30 we understood the words 
range and -value” each in a (presupposed) semantical sense—so that the 

rules are thereby relevant to the question what we take to be intended by a 
wh0- using F*p as an actual language for purposes of communication, 

asserts a particular one of its wffs-or. more exactly, so that the rules constitute 
proposal of a norm, an ideal demand as to what shall be intended by such a 

But we now reintroduce the rules a-f with a new meaning, according to 

wh,ch we do not take the words "range” and "value" in any semantical 

sense, but rather, after selecting a particular non-empty class as domain of in- 

dmduals, we regard the rules as constituting a definition of the words "range’ ’ 

Z bViU\h(em" ^ “T 1thC W°rd "ValUe’" “ <“»)■ On 

wWchTs ^brt rgC 1 VanaWe C°meS ‘° "* mere,y a ^ain class 
"value" of a ^H y “* Variable the "MUon: and the 
, „ ' awff for a Pven »ys‘<™ of "values” of the variables a„ a, a 
(all of the free variables of the wff being included among a„ a..'a j 
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comes to be merely a certain truth-value408 which is abstractly associated 

with the wff and with n ordered pairs <alf aj), <a*, a*>,..<a„, a„> in 

which each a( is a member of the range of a,. Hereafter, when the words 

“range” and “value” occur in a syntactical discussion, they are to be under¬ 

stood in this syntactical sense, the fact that a passage is not in small type 

being sufficient indication that the words do not have their semantical 

sense. (Where needed for clarity, however, we may use such more explicit 

phrases as “value in the syntactical sense.”) 

These syntactical notions of range and value may of course be used in¬ 

dependently of any interpretation of the system Pp or FgP—thus even if 

the system is used purely as a formal calculus, without interpretation—or 

even if it is used with some interpretation quite different from the principal 

interpretations as given in §30. 

A non-empty domain of individuals having been selected, a wff is said to 

be valid in that domain if it has the value t for all possible values of its free 

variables, satisfiable in that domain if it has the value t for at least one 

system of possible values of its free variables. (Here, by a “possible” value 

of a variable is meant merely a value that belongs to the range of the 

variable according to rules a, bn.) 

A wff is said to be valid if it is valid in every non-empty domain, salisfiable 

if it is satisfiable in some non-empty domain.407 

By the universal closure of a wff B we shall mean the wff (cJfCu.J ... 

(cJB, where c,, c2,. . ., cu are the free individual variables of B in alpha¬ 

betic order. Similarly, the existential closure of B is the wff (3cJ(3cu_j) • •. 

‘"‘Observe that this reference in the definition to truth-values does not of itself render 
the definition semantical. Nevertheless, if preferred, any two other things may be used 
here instead of the two truth-values. For example, in the syntactical definition o 
"value” we might use the numbers 0 and 1 in place of the truth-values, truth and false¬ 
hood respectively, and then define a wff to be “valid” in a given domain if it has e 

value 0 for all possible values of its free variables. . 
407 At this point §§07-09 of the introduction should be reread, especially the discussion 

in §09 of Tarski's syntactical definition of truth, and footnotes 142. 143. That we have 
given here a syntactical definition of validity rather than of truth is just because tn 
pure functional calculus of first order has no wffs without free variables. 

The notions of validity and of satisfiability may also be regarded as analogue, 
for the functional calculus of first order, of the notions of being a tautology and o! nor 
being a contradiction in the propositional calculus. Indeed, in the special case 
of the pure functional calculus of first order which is at the same time a wff o P P 

ositional calculus, the former notions immediately reduce -Thetween the 
obvious that the discussion in the present section, regarding the distant . at 
syntactical and the semantical notions of value, and the 
the beginning of §15 are closely parallel. But there is the important,differencehat an 

effective test was given for recognizing a wff of the pn^«ntaonaI Jlhle for 
or of P.) as being or not being a tautology, whereas no eftecU\e tes poss ^ 
recognizing a wff of the pure functional calculus of first order as being 
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(ScjJB, where c,, c2,. . ., cu are the free individual variables of B in alpha¬ 

betic order. 

**430. A wff A is valid in a given non-empty domain if and only if its 

negation ~A is not satisfiable in that domain. A wff A is valid if 

and only if its negation ~A is not satisfiable. 

Proof. This follows at once by rule d. or, more correctly, by the clause 

corresponding to rule d in the definition of “value" in the syntactical 

sense. 

**431. A wff is satisfiable in a given non-empty domain if and only if its 

negation is not valid in that domain. A wff is satisfiable if and only 

if its negation is not valid. 

Proof. Again this follows at once by rule d. 

**432. A wff is valid in a given non-empty domain if and only if its univer¬ 

sal closure is valid in that domain. A wff is valid if and only if its 

universal closure is valid. 

Proof. By rule f. 

**433. A wff is satisfiable in a given non-empty domain if and only if its 

existential closure is satisfiable in that domain. A wff is satisfiable 

if and only if its existential closure is satisfiable. 

Proof. By rules d and f. For from these two rules together it follows that, 

for a given system of values of the free variables of (3a)A, the value of 

(3a) A is t if the value of A is t for at least one value of a. and the value of 

(da)A is f if the value of A is f for every value of a. 

**434. Every theorem is valid.408 

Proof. Using either of the formulations F>p and F£p, we may show that 

aU the axioms are valid and all the rules of inference preserve validity. 
Details are left to the reader. 

**435. A wff is valid in a given non-empty domain if and only if its prenex 

normal form is valid in that domain. A wff is valid if and only if its 
prenex normal form is valid. 

calculus of firetorder^oMMSO ore»*236dff^ th* anaIo®ue <for the Purc functional 
£e method of proof^’the same A"d in faCt 
be proved as corollaries of **434 f. anc* hence *323, could now 

were established on a much weaker bi£ than §32 these two metatheorems 
u weaKer oasis than that required for **434. 
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Proof. If B is the prenex normal form of A, we have by *392 that f- A = B. 

Hence by **434, A = B is valid. Hence by rules d and e, A and B have the 

same value for every system of values of their free variables. From this the 

metatheorem follows by the definition of validity. 

**436. A wff is satisfiable in a given non-empty domain if and only if its 

prenex normal form is satisfiable in that domain. A wff is satisfiable 

if and only if its prenex normal form is satisfiable. 

Proof. As in the previous proof, if B is the prenex normal form of A, then 

A and B have the same value for every system of values of their free vari¬ 

ables. From this the metatheorem follows by the definition of satisfiability. 

**437. A wff is valid in a given non-empty domain if and only if its Skolem 

normal form is valid in that domain. A wff is valid if and only if its 

Skolem normal form is valid. 

Proof. The proof of this parallels exactly the proof of *421, except that 

wherever that proof makes use of a theorem the present proof must instead 

make use of the fact that that theorem is valid, and wherever that proof 

makes use of a rule of inference the present proof must instead make use 

of the fact that that rule of inference preserves validity (in an arbitrary 

non-empty domain). 

A wff is said to be in the Skolem normal form for satisfiability if it is in 

prenex normal form without free individual variables and has a prefix of 

the form 

(a,)(a2)... (afn)(3b1)(3b2)... (3bn). 

where m ^ 1, n ^ 0. 

Given any wff A, we may find the Skolem normal form of ~A. This will 

be 3. wff 

(3a1)(3a2) ... (3am)(b2) (b2) ... (b„)M 

in which m ^ 1, n 0, and M is quantifier-free. Then the prenex normal 

form of the negation of this wff will be a wff 

(ai)(a2)... (a^)(3bi)(3b2)... (3bn)M , 

where M' is obtained from M by either deleting or inserting an initial n 

gation sign ~. This last wff, the prenex normal form of the negation of t e 

Skolem normal form of the negation of A, is in Skolem normal *or 

satisfiability; we shall call it the Skolem normal form of A for satisfiability. 
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**438. A wff is satisfiable in a given non-empty domain if and only if its 

Skolem normal form for satisfiability is satisfiable in that domain. 

A wff is satisfiable if and only if its Skolem normal form for satis¬ 

fiability is satisfiable. 

Proof. By **431, **437, **430, **436. 

**439. If a wff is valid in a given non-empty domain, it is valid in any 

non-empty domain having the same or a smaller number of 

individuals. If a wff is satisfiable in a given non-empty domain, it 

is satisfiable in any domain having the same or a larger number 

of individuals. 

Proof. Suppose that A is satisfiable in the non-empty domain and let 

^ be a domain having the same or a larger number of individuals. Then a 

one-to-one correspondence can be found between and some part ft° of the 

domain ft (where ft° may coincide with ft or may be a proper part of ft). 

If i is any individual in $, let i' be the corresponding individual in ft° under 

this one-to-one correspondence. Also select a particular individual i0 in ft. 

If k is any individual in ft°, let k' be the corresponding individual in $ under 

the foregoing one-to-one correspondence; and if k is any individual which is 

in ft but not in ft0, let k' be i0. If 0 is an m-ary propositional function over 

i.e., a propositional function whose range is the ordered m-tuples of individ¬ 

uals of 3, let 0' be an m-ary propositional function over ft, determined by 

the rule that 0’(kvk2.km) is 0(k\, k'2.k'J. 

Let aj, a2, . .., an be the complete list of free variables of A. Since A is 

satisfiable in there is a system of values alt a2.a„ of at, a2.a„ for 

which the value of A is truth, each a, being an individual in $ or a propo¬ 

sitional function over $. Then a[, a'2.a'n is a system of values of a1( a2, 

..an for which the value of A is truth, each a( being an individual in ft or 

a propositional function over ft. Thus A is satisfiable in ft. 

This completes the proof of the second part of the metatheorem. From this 
the first part then follows by **430. 

EXERCISES 43 

43*0. Let A have no free individual variables and let C be the Skolem 

normal form of A Show by an example that it is not in general true that 

r A = c. Is it always true that 1- A o G? That C id A? 

43*1. Find the Skolem normal form of each of the following: 
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(1) F(x) => F(ar) 

(2) (x)F(z) z> (3x)F(x) 

(3) p zd (3x)p 

(4) G(x) => . (3x)G(x) z> (3x)tf(x) 

(5) (3a:) (3y)F(x, y, z) => (3y) (3x) F(x, y, z) 

43.2. As was done in the text for Flp and rules a-f, let the rules oc-£ of 

§30 be reinterpreted as syntactical definitions of "range” and "value” for 

the case of the system Flh. Let a wff of Flh be called valid if it has the value 

truth for all possible values of its free variables; and let a wff of Flh without 

free variables be called true if it has the value truth. Also, given a wff A 

of Flh in which the distinct individual variables (bound and free) that occur 

are ax, a2, ..a„, let the characteristic function of any wf part B of A be 

defined by induction as follows: The characteristic function of E(a(, a,, at) 

is the n-ary function of natural numbers whose value for arguments av a2, 

is 0 if a( + a, = ak, and 1 in the contrary case; the characteristic 

function of 77(a(I a,, afc) is the n-ary function of natural numbers whose 

value for arguments a1, a2l .... an is 0 if afi, = ak, and 1 in the contrary 

case; if the characteristic function of Bx is fv the characteristic function of 

~BX is the n-ary function of natural numbers whose value for arguments 

av a2, .. an is 1 — /x(ax, a2,. .., an)\ if the characteristic functions of Bx 

and B2 are /x and /2 respectively, the characteristic function of [Bx 3 B2] 

is the n-ary function of natural numbers whose value for arguments 

a1, a2, ..., an is (1 — ffa, a2.an))f2(av a2-- an)\ if the characteristic 

function of Bx is fv the characteristic function of (Va^Bj is the n-ary 
• 

function of natural numbers whose value for arguments ax, a2,..an is 

1 XT (^ /l(**!» ai> ' ’ '• an))f 
at 

the product being taken over all natural numbers a{, with the convention 

that the product is 1 if all the factors are 1, 0 if any factor is 0. Prove that 

a wff A of FIh is valid (or in case A has no free variables, true) if and only if 

the characteristic function of A as a wf part of A vanishes identically, i.e., 

has the value 0 for all possible arguments. 

43.3. Show that the wff 

(3x)(y) . F{z, y) zd . ~F(y, x) id . F(z, z) = F(y, y) 

is valid in any domain consisting of not more than three individuals but is 

not valid in a domain of four individuals. 
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43.4. Prove **324 by showing that, if a quantifier-free formula is not a 

substitution instance of a tautology, there is a finite non-empty domain in 

which it is non-valid. 

43.5. Show that the following wffs are valid in every non-empty finite 

domain but not valid in an infinite domain:409 

(1) (3x)(y)(3z) . F(y, z) => F(x, z) z> . F(x. x) => F(y. x) 

(2) (*i)(**)(*3)(7(*i. *1) . F(*!,*,) F(xltxt) v F(x2,x3)]3 (3y)(2)F(y,2) 

43.6. (1) Without relying on or presupposing the reduction of a wff to 

Skolem normal form by the method of §42, make a direct statement of a 

process for reducing a wff to its Skolem normal form for satisfiability. 

(2) Apply this process to the negation of the wff of exercise 43.5(1). 

43.7. Prove directly that a wff is satisfiable if and only if its dual is not 

valid. 

44. Gbdel’s completeness theorem. 

**440. Every valid wff is a theorem. (Godel's completeness theorem.) 

Proof. By *421 and **437, it is sufficient to consider a wff A in Skolem 
normal form, 

(3a1)(3a2)...(30(b1)(b2)...{bn)M, 

where M is quantifier-free and contains the individual variables a2. a2. 

a"’ ^l' b2.bn (and no other individual variables). We shall show that 

either (1) A is a theorem, or (2) A is not valid. 

Let us enumerate the (ordered) m-tuples of positive integers according to 

the following rule: If jm, the m-tuple 

<'*1’ *a.*m> comes before (i.e., comes earlier in the enumeration than) 

the^ M-tuP^ Of /->! « ■', + •, + •.. + = ,i+,, + ...+ 
*1 h. *2 - 7*-- »fc = Ik. **+1 < ik+1. the m-tuple <*lt ia.im> again 
comes before the m-tuple </lt ;2. 

Thus the m-tuples of positive integers are enumerated, or arranged in an 

mfimte sequence. The first m-tuple in this enumeration is <1,1,1,..1,1,1) 

the second m-tuple is <1, 1, 1,..1, 1. 2>: the third one is <1. 1, 1, 

PaT^ ^iModJs°rh«n,'iS7'eS °” Kurt SChU,,e- a"“ °>h" *° 

ix + t*.. »^e AndUm tnni^ h* : * tv? ^ arran8ed in order of increasing sums 
in lexicographic order P V,Dg ** ^ SUm are arran«ed ^montr themselves 
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1, 2, 1>; the fourth is <1, 1, 1.2, 1, 1>; and so on."1 Evidently, no po¬ 

sitive integer occurring in the Ath m-tuple is greater than k (if m ^ 1). 

We let the &th w-tuple in this enumeration be <[£1], [k2],..[km]). 

I.e., we use [W] as a notation for the /th positive integer in the £th m-tuple. 

Now let B* be 

C*i a, bj b, ...b, 

let Ct be 

Bj v B2 v ... v Bt, 

and let Dt be 

(aTj) (Xj) . . • (^kn+l)Cfc. 

We notice that the variables z(t_1)n+2, x,k_1)n+s>..ztf,+1, which are here 

substituted for b1( b2> . . bn are none of them the same as any of the 

variables x[kl], x[k2], ..x[km], which are substituted for at, a,...., a*. 

Moreover the variables xtk_1)n+t, *(*_un+3. ..xtn+1 are all different among 

themselves, and different from all the variables occurring in Blt Bt,.. 

Bt_j. But all the variables xl, x2,..xkn+1 occur in Ct. 

(It is possible that n may be 0, and the reader should observe that this 

special case makes no difficulty; but m is never less than 1.) 

Since M is quantifier-free, it follows that Bt and Cfc are also quantifier- 

free. And, except in the case n = 0, the complete list of free individual 

variables in Cfc is xx, x2, ..., xkn+1. 

Lemma: For every k, Dt H A. 

We prove the lemma by mathematical induction with respect to k. In 

doing so, we assume that none of the variables ax, a2.a,,, bx, b2,.... bn 

are the same as any of the variables x1, x2, x2,... (as may be brought 

about by alphabetic changes of bound variable in A if necessary). 

By *330 and modus ponens, repeated tn times, 

(b,)(b,)... (b„) S^-MIhA. 

Hence by *306 and modus ponens, 

(^)(b1)(b2)... (b„) S^-MIhA. 

Hence by alphabetic change of bound variable, repeated n times, Dx h A. 

This is the case k = 1 of the lemma. 

4llHere, for purposes of illustration, we have taken m > 0; and the dots in each case 

represent a number of l's. As further illustration the mth m-tuple is <1. 2.1. •■ • •. • • 
the (m + l)th is <2. 1.1.1.1. 1>: the (« + 2)th is < . 1. 1. • • •1-1' 3>* 
(m + 3)th is <1.1.1.1.2,2); the (m + 4)th is <1.1.1.1.3. 1>. “ 

(m + 5)th is <1, 1.1.2. 1. 2>. 
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Now suppose, for some particular k greater than 1, that Dfc-1 b A. By *385 

and *341 and P, repeating n times, we have that 

• • • (xtn+i)[Cjt_i v Bt] b 

Cfc-l V (X(fc-l)n+2)(ar(fc-l)n+3) • • • (Xkn+l)B*- 

From this, since Ct_, v Bfc is the wff Ct, we have by *306 and modus ponens, 

repeated (k — l)n + 1 times, that 

Dfc b Cfc_j V (^(fc_Dn+2)(x(k-l)n+3) ■ • • (x*n+l)Bfc- 

Hence by alphabetic change of bound variable, repeated n times, 

D,hC,_1v(b1)(b,)...(b„) 

Also by *330 and the transitive law of implication, m times, 

KbiHb.)... (bj = A. 
Hence by P, 

D* b C*., v A. 

Hence by generalizing upon x(fc_,)n+1 and using *386 and P, then generalizing 

upon x(t_1)n and using *386 and P, and so on, repeating (k — l)n -f- 1 

times, we have that 

Dfc b Dt_, v A. 

Since Dt_, b A, we have that b Dt_, z> A, and hence by P that Dk b A. 

This completes the proof of the lemma. Continuing the proof of **440, 

we distinguish two cases.412 

Case 1: for some k, Ck is a theorem. Then by generalization (kn + 1 

times), Dt is a theorem. Hence by the lemma, A is a theorem. 

Case 2: for every k, Cfc is a non-theorem. Then for every k, by *311, it 

is possible to find such an assignment of truth-values to the elementary 

parts of Cfc (i.e., the wf parts which have either the form of a propositional 

variable alone or the form f(c„ c2, . .., c,)) that the value of Ck. as obtained 

y the truth-tables of id and ~, is f. Or, as we shall say, it is possible to find 

a falsifying assignment of truth-values to the elementary parts of Ck. (The 

same elementary part may occur more than once in Ck, in which case of 

course the same truth-value is to be given to it at every occurrence; but 

uinerent elementary parts may receive different truth-values, even if they 
oilier only as to individual variables.) 

syn,iAxtl^,f?SuStBut^nrrnC^f ,7* ?*** USe °f the ,aw of exc,uded ™dd'e (in the 
cases holds for a '^ven A the 27 Tl™ *S at,hand to determine which of the two 

Problem of "° S°IUti°" °f ** ^ 
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Now let Ej, E2, Eg, .... be an enumeration of the different elementary 

parts occurring in C„ C2, C3,..according to the following order: first 

the different elementary parts of Cv in the order of their first occurrence in 

Cx; then the different elementary parts of C2 that do not occur in C^, in the 

order of their first occurrence in C2; then the different elementary parts of 

C3 that do not occur in C,, C2, in the order of their first occurrence in C3; 

and so on. 

We proceed to make a "master assignment” of truth-values to E^, E2, 

E3, . . ., as follows. If Ej receives the value t in infinitely many of the falsi¬ 

fying assignments413 of truth-values to the elementary parts of Cv C2, 

C3> . . ., we give Ej the value t in the master assignment; in the contrary 

case, E! must receive the value f in infinitely many of the falsifying assign¬ 

ments of truth-values to the elementary parts of Clt C2, C3,.. ., and we give 

Ex the value f in the master assignment. Next we consider those infinitely 

many falsifying assignments of truth-values to the elementary parts of 

Cj, C2, C3> . . . in which receives the same truth-value as in the master 

assignment; if E2 receives the value t in infinitely many of these, we give Ea 

the value t in the master assignment; and in the contrary case we give E2 

the value f in the master assignment. Next we consider those infinitely many 

falsifying assignments of truth-values to the elementary parts of Cj, C2, 

C3> ... in which Et and E2 receive each the same truth-value as in the master 

assignment; if E3 receives the value t in infinitely many of these, we give E, 

the value t in the master assignment; and in the contrary case we give 

E3 the value f in the master assignment. And so on. 

Now suppose that the master assignment should result in the value t for 

one of Cj, C2, C3,. .., say for Cfc. The different elementary parts of C* are 

contained in a finite initial segment of Ej, E2, E3,..., say in Ej, E2,..., E,. 

Let ev e2.et be the truth-values assigned to Ej, Ea, . .., E, respectively, 

by the master assignment. Then in view of the form of Cv Ca, Cj,... as 

disjunctions, and in view of the truth-table of v, we have that no assignment 

of truth-values to the elementary parts of Cf, j > k, can be a falsifying 

assignment if it includes the assignment of et,..., et to Ej, Ea,..E, 

«»It may happen that there is more than one falsifying assignment of truth-values 
to the elementary parts of C» (though the number is always finite for a hxtajJth 
In speaking of “the falsifying assignments of truth-values to the elementary partsi or 
C„ Cj, C,_we mean to include, for each C4, all the various falsifying assignments 

of truth-values to the elementary parts of C*. ^ 
In the special case n - 0, it may also happen that falsifying assignments of fani 

values to the elementary parts of Ct and of C, coincide in the sense that the list oi 
elementary parts involved is the same and the truth-values assigned are toe same, 
nevertheless we count the two assignments as different if A and / are diller 



GOEDEL COMPLETENESS THEOREM 237 h*: 

respectively. But tins contradicts the rule which was used in assigning the 

truth-value <r, to E- in the construction of the master assignment. 

It follows that the master assignment results in the value f for even.' C*. 

I.e., Q, Cj. Cj. ... are simultaneously falsified by the master assignment. 

Now we take the positive integers as domain of individuals, and proceed 

to assign values to the propositional and functional variables of A as follows. 

To a propositional variable p is given the same value as given to p in the 

master assignment. To an i-ary functional variable f is assigned as value 

an i-ary propositional function 0 of individuals, as determined by the 

following rule: 0^. u*. .... w,) has the same truth-value which is assigned 

to .in the master assignment; or if no truth-value is 

assigned to f^x^, .x^J in the master assignment, the truth-value 

of 0(kj, k,.a,) is t. 

This assignment of values to the propositional and functional variables of 

A is at the same time an assignment of values to the propositional and 

functional variables of each Bk and of each C*. If we also assign to each in¬ 

dividual variable i, the positive integer u as value, we have an assignment 

of values to all the variables of Bt and of C*. This assignment gives to C* 

the value f ^since we have proved that the master assignment falsifies Ct). 

Hence it also gives to B* the value f ^ce C* is Ck_j v B*. and in view of 

the truth-table of v). Hence by rule f of §30 (or by the clause corresponding 

to rule f in the definition of "value” in the syntactical sense), it gives the 
value f also to 

(*i)(t>i) - - • lb.) 
i-e., to 

-.. (b.) . 

This holds for all k\ and as k runs through all values, we know that <x-u., 

xItt..x:*«> through all possible ^tuples of the variables xB. and 

hence that all passible substitutions are made of variables xm for a. a*. 
—.a.- Hence the value f is given to 

(3%)^)... (3a.)(bjfb*) ... (bJM. 

T^is we have found an alignment of values to the propositional and 

tamonal variables of A such that the value of A is L Therefore A is not 
valid. 

This comptetes the proof of *»440. We notice ns a corollarv the Mowing 
rue ta theorem: ' ^ 
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**441. If A is a wff in Skolem normal form, 

(3a,)(3a2)... (3am)(b1)(b2)... (b„)M, 

if Bfc is the quantifier-free wff, 

cai ** •••*» bi b« •••*»• 

and if Ct is BL v B2 v . . . v Bfc, then A is a theorem (and is valid) 

if and only if there is some positive integer k such that C* is a sub¬ 

stitution instance of a tautology of P. 

45. Lowenheim’s theorem and Skolem’s generalization. In case 2 

of the foregoing proof of Godel’s completeness theorem we have shown about 

an arbitrary wff A which is in Skolem normal form and is not a theorem that 

it is not valid in the domain of positive integers. Hence, if a wff in Skolem 

normal form is valid in the domain of positive integers, it is a theorem, and 

therefore by **434 it is valid in every non-empty domain. Hence by **437, 

if any wff is valid in the domain of positive integers, it is valid in every non¬ 

empty domain. 

Moreover, by **439, any enumerably infinite domain (in particular, e.g., 

the domain of natural numbers) may take the place here of the domain of 

positive integers. Thus follows: 

**450. If a wff is valid in an enumerably infinite domain, it is valid in 

every non-empty domain.414 [Lowenheims theorem.) 

As a corollary by **431, we have also: 

**451. If a wff is satisfiable in any non-empty domain, it is satisfiable in 

an enumerably infinite domain. 

Skolem’s generalization of this is the metatheorem that, if a class of wffs 

(it may be an infinite class) is simultaneously satisfiable in any non-empty 

domain, then it is simultaneously satisfiable in an enumerably infinite 

domain. 

Here the definition of simultaneous satisfiability is the obvious generali¬ 

zation of the definition of satisfiability of a single wff. Namely, a class T 

of wffs is said to be simultaneously satisfiable in a given non-empty domain 

of individuals if, of all the free variables of all the wffs of T taken together, 

there exists at least one system of possible values for which every wff of T 

“‘Thus, if a wff is valid in the domain of natural numbers, it is valid also in non- 
enumerably infinite domains. If a wff is satisfiable in a non-enumerably mum 
domain, it is satisfiable also in the domain of natural numbers. 
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has the value t. (In the case of a finite non-empty class T oi wffs, it is clear 

that simultaneous satisfiability is equivalent to the satisfiability of a single 

wff, the conjunction of all the wffs of T.) 

A class of wffs is said to be simultaneously satisfiable if it is simultaneously 

satisfiable in some non-empty domain of individuals. 

We shall need also the following definitions (which we adopt not only for 

the case of the pure functional calculus of first order but also for other 

functional calculi of first and higher orders415). 

Where T is any class of wffs and B is any wff, we say that T h B if there 

are a finite number of wffs Aa,.. A^ of /''such that \v A2.A^ h B. 

A class r of wffs is called inconsistent if there exists a wff B such that 

T\- B and T\- ~B. If no such wff B exists, we say that 71 is consistent. 

Where T is any class of wffs and C is any wff, we say that C is consistent 

with T if the class is consistent whose members are C and the members 

(wffs) of T; otherwise we say that C is inconsistent with R 

A class r of wffs is called a maximal consistent class if R is consistent and 

no wff C is consistent with R which is not a member of r. 

We establish the following as a lemma: 

**452. Every consistent class R of wffs can be extended to a maximal 

consistent class Z', i.e., there exists a maximal consistent class /* 

among whose members are all the members of T. 

Proof. We shall give a rule by which the maximal consistent class T is 

uniquely determined when R is given. (However, this rule will not be such 

as to provide in any sense an effective construction of the members of P.) 

First the wffs must be enumerated, as is possible by well-known methods 

(since the primitive symbols are enumerable, and the wffs are certain finite 

sequences of primitive symbols).416 Then we shall speak of "the first wff,” 

the second wff,” and so on, referring to this enumeration of the wffs. 

we US? ^ an obvious extension of the definition of simulta- 
ous satisfiability to an applied functional calculus of first order. 

Vi **?**??e‘ WC may use the following enumeration of the wffs 

i 
W-thHS-rSpa- PartiCUlar’ ^ ^ m 

duced'In^^^eTuiiierated^^fonows °‘ ^ 

W 'mPT0PZ Symbois‘ in o3£ in^httS' 
«e£c iS: 1116 mth ‘^ivideuiwariLbl§e3,0n 
ositional variable in alphabetic order, if thTSh 
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And for every wff there is a positive integer n such that it is ‘‘the nth wff” 
(i.e., the nth wff of the enumeration). 

Given any class r of wffs, we define the infinite sequence of classes 

r°, r1, r2, .. ., (by recursion) as follows: P> is the same as R If the (n + l)th 

wff is consistent with T", then rn+1 is the class whose members are the 

(n -f l)th wff and the members of 71". Otherwise /’n+1 is the same as rn. 

It follows by mathematical induction that 7"°, T1, T2,... are consistent 

classes of wffs if Tis consistent. For T0 is the same as T. And the consistency 

of rn+1 follows at once from that of 71". 

We let P be the union of the classes P, r1, r2.I.e., a wff C is a mem¬ 

ber of P if and only if there is some n such that C is a member of P1. 

Now if r is a consistent class, it follows that P is a consistent class. 

For suppose that P is inconsistent. Then there are a finite number of 

wffs A1( A2, ..., Am of P, and a wff B, such that Alt A2,..., Am 1- B and 

A1( A2, . . ., A^ I- ~B. Say that At is the aath wff, A2 is the a2th wff,.... A„ is 

the amth wff; and let a be the greatest of the positive integers a2,..., am. 

Then all the wffs Alf A2, . .., A,,, are members of P, and consequently P 

is inconsistent. But this contradicts our proof above that all the classes 

P, ri, r2,... are consistent (if r is consistent). 

Moreover P is a maximal class, if 71 is consistent. 

For let C be any wff which is consistent with P. Say that C is the (n -f l)th 

wff. Being consistent with P, C must be consistent with rn. Therefore, by 

the definition of rn+1, C is a member of rn+1. Therefore C is a member of /*. 

Thus the proof of the lemma, **452, is completed. We observe that a 

corresponding lemma holds not only for the pure functional calculus of 

first order but also for any applied functional calculus of first order if the 

primitive symbols are enumerable. And indeed **452 can be extended to a 

wide variety of logistic systems, since the proof requires only a suitable 

notion of consistency of a class of wffs, and the enumerability of the primi¬ 

tive symbols of the system.417 

<2, ro>; and the mth i-ary functional variable in alphabetic order, if the Ath ordered 
pair of positive integers is <i + 2, m>. . . . ,. 

And let us speak of the pth primitive symbol to mean the pth primitive symbol i 

the foregoing enumeration. ... 
Then let the formulas of the pure functional calculus of first order be enumeratea y 

the rule that, if the Ath order pair of positive integers is </4, m> and the /ith w»-tupie 
positive integers is <ji\, .t*1611 *he formula in the enumera i 

. . . fim. where fij is the /r,th primitive symbol, p, is the p,th pnmitive symbo , 
...,U» is the «_th primitive symbol. „ . 

Finally, from the enumeration of the formulas, delete all those which are 
well-formed, so obtaining an enumeration of the wffs. 

4,7This last is presumably a consequence of requirement (I) of §07. 
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We now consider an infinite sequence of applied functional calculi of first 

order S0, Sj, S2,.. having as primitive symbols all the primitive symbols 

of the pure functional calculus of first order and in addition certain individual 

constants. Namely, the primitive symbols of S0 are those of the pure func¬ 

tional calculus of first order and the individual constants w0 0, w10, wt 0, .. 

the primitive symbols of Sn+1 are those of Sn and the additional individual 

constants w0 n+1, w1 n+1, wt .. 

Also we let be the applied functional calculus of first order which has 

as its primitive symbols the primitive symbols of all the systems S0, S1( 

St,.... (Thus the individual constants of S,,, are all the constants wm n, for 

m = 0, 1, 2,... and » = 0, 1, 2,....) 

In the same way that we have already remarked for the pure functional 

calculus of first order, it is possible to enumerate the wffs of S,,,. Then, in 

the case of each Sn, an enumeration of its wffs is obtained by deleting from 

the enumeration of the wffs of Sm those which are not wffs of Sn. And re¬ 

ferring to this enumeration we shall speak of "the first wff of Sn,” "the 

second wff of S„.” and so on. 

Using these enumerations, we can extend any consistent class An of wffs 

of S„ to a maximal consistent class J„. of wffs of Sn, by the method stated 

above in the proof of **452. 

Now let a consistent class ro be given of wffs of S0 which have no free 

individual variables. We define the classes T™ (m = 0, 1, 2, 3, . . . and 

» = 1, 2, 3 ) as follows: r® is ro. If the (m -|- l)th wff of Sn, n > 0, 

has the form ~(a)A and is a member of r®, then T’”+1 is the class whose 
members are 

~s; ai 

and the members of T”; otherwise is the same as T™. And 2 is Jn, 

where An is the union of the classes -T®, TJ,,/"*. " "+1 

Evidently the members of are wffs of s". And T® is a maximal con¬ 
sistent class of wffs of S„; 

Assume that, for some particular m, is consistent but Tm+1 is incon¬ 

sistent Then we must have the case that is not the same asY" but has 
the additional member n 

~s; A|. 

By the inconsistency of r?\ and the deduction theorem, 

^ »■ -s* ai id b 
and 
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r: h ~s;^ A| 3 ~B. 

Hence by P, 

r: s ai 
Let x be an individual variable which does not occur in this proof 

from hypotheses, and in it replace the constant wmn everywhere by x; 

since wm n does not occur in any of the members of r*, we thus have: 

C I- SBX AI. 

By generalizing upon x,418 and then making one or more alphabetic changes 

of bound variable, we have that /*" I- (a)A; but since ~(a)A is a member of 

r° and therefore of I"1”, this contradicts the assumption that /*" is consistent. 

Thus we have proved that, if /*" is consistent, then is consistent. 

By mathematical induction, it follows that, if Z1® is consistent, then /’"is 

consistent for every m, and therefore is consistent. Since/’J is the same 

as r°, and is therefore consistent, it follows by a second mathematical in¬ 

duction that Z1® is consistent for every n. 

Let ro be the union of the classes r\, r\, T,.Then ra is a maximal 

consistent class of wffs of S^,. (For rm could be inconsistent only if, for some 

n, Z’® were inconsistent. Further, if C is a wff of Sa consistent with Z^, then, 

for some n, C is a wff of Sn and is consistent with 71®+1; since 7’^+1 is a maximal 

consistent class of wffs of S„, it follows that C is a member of Z^ and 

therefore a member of /*„.) 

We need the following properties of ro: 
dl. If A is a member of then ~A is a non-member of r„. (For other¬ 

wise ra would be inconsistent.) 

d2. If A is a non-member of ra, then -'A is a member of ra. (For, if A 

is a non-member of ra, then A must be inconsistent with ra', therefore, by 

the deduction theorem and P, ra I- '•A; therefore ~A is consistent with r„‘, 
therefore -A is a member of /*„.) 

el. If B is a member of ra, then A d B is a member of rm. (For by P, 

fol-AD B; thus A 3 B is consistent with r„ and therefore a member of 

ra.) 
e2. If A is a non-member of T^, then A 3 B is a member of ra. (For by 

d2, -A is a member of ra, and therefore by P, r„ H A 3 B.) 

e3. If A is a member of rm and B is a non-member of T^, then A3 B is a 

“•This is permissible because x does not occur in any of the members of P? which 

are here actually used as hypotheses in the proof of 
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non-member of ro. (For by d2, ~B is a member of 7^; hence, if A zd B were 

a member of Tm, /*„ would be inconsistent, by an application of modus -po¬ 

llens.) 
fl. If, for every individual constant wmn, 

s: ai 
• wm,n 

is a member of then (a) A is a member of Tm. (For, if (a) A is not a mem¬ 

ber of Tm, it follows by d2 that ~(a)A is a member of rm\ hence, for some 

», ~(a)A is a member of 71®; hence, by the way in which the classes /?™+1 

were defined, we have for some m that 

A| 

is a member of Tf*1 and therefore a member ofthus by dl we have for 

some m and n that 

A| 
is a non-member of ra.) 

f2. If, for at least one individual constant wm>n, 

ai 

is a non-member of Tm, then (a)A is a non-member of ra. (For, if (a) A is a 

member of T*, we have by *306 and modus ponens, for an arbitrary individ¬ 
ual constant that 

r. ^ AI. 
and hence that 

Al» 

being consistent with 71., must be a member of /*„.) 

Taking the natural numbers as domain of individuals, we now assign 

values to all the propositional and functional variables of S,—or, what is 

the same thing, to all the propositional and functional variables of the pure 
functional of first order—as follows: 

To a propositional variable p is assigned the value t if the wff p is a 

member of the value f if the wff p is a non-member of T . Letting u 
be the natural number *(m* + 2mn + n* + 3m + we have for each 

°bvi™ '°U°™8 enumeration of the ordered 

<0. 0>.<0. !>.<!. 0>,<0, 2>,<1, 1>,<2, 0>.<0, 3>. 
SfSt!„th44'°Um'rati0a °' ““ 0rd'red °f P»s“'ve integer* which „ 
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individual constant wm<n a unique corresponding natural number um>n, and 

for each natural number a unique corresponding individual constant 

wmin. Then to an i-ary functional variable f is assigned as value the i-ary 

propositional function <P of individuals such that0(t<mi>ni, «m|,ni.«mi,n,) 

is t or f according as f (w*,^, • • •. is a member or a non-member 

of ra. 
Now notice the way in which dl and d2 above are related to rule d 

of §30, and el, e2, e3 are related to rule e of §30, and fl and f2 are related to 

rule f of §30. From this relationship (or, more correctly, we should speak of 

the relationship to the clauses which correspond to rules d-f in the definition 

of “value” in the syntactical sense) it follows that every wff of S„ without 

free individual variables has, for the system of values that we have just 

assigned to the propositional and functional variables of S,,,, the value t or 

the value f according as it is a member or a non-member of ra. (It is left 

to the reader to state the proof of this explicitly by mathematical induction.) 

Since the members of T0 are without free individual variables and are 

included among the members of /1n), we have thus shown that T0 is simulta¬ 

neously satisfiable in the domain of natural numbers, hence, by an obvious 

extension of **439, simultaneously satisfiable in any enumerably infinite 

domain. 

But ro was chosen as an arbitrary consistent class of wffs of S0 without 

free individual variables. Hence every consistent class of well-formed formulas 

of S0 without free individual variables is simultaneously satisfiable in an 

enumerably infinite domain (with such an assignment of values to the individ¬ 

ual constants as to give a different value to each). 

To extend this result to any consistent class of wffs of the pure functional 

calculus of first order, we have only to substitute, for the free occurrences 

of individual variables, individual constants w„tin such a way that a 

different individual constant is substituted for the free occurrences of each 

different individual variable. . 
Thus we have the following metatheorem of the pure functional ca cu us 

of first order: 

**453. Every consistent class of wffs is simultaneously satisfiable in an 

enumerably infinite domain. 

We need also the following: 

**464. Every simultaneously satisfiable class of wffs is consistent. 

Proof. Let T be an inconsistent class of wffs. Then there are a finite 
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number of wffs Alt A2,. . Am of r, and a wff B, such that A,, A2, . . 

AfflhB and Alf A2.Amh ~B. By ♦*321, m> 0. Therefore by the de¬ 

duction theorem and P, h ~ . AjA.. .. A,,. Therefore by **434, - . A,Aa 

... An, is valid. In view of the truth-tables of negation and conjunction, it 

follows that A1( A2, .... A„ cannot have the value t simultaneously, for any 

system of values of their free variables. Thus r cannot be simultaneously 

satisfiable. 

From **453 and **454 we obtain as a corollary the result of Skolem which 

was mentioned at the beginning of this section: 

**455. If a class of wffs is simultaneously satisfiable in any non-empty 

domain, it is simultaneously satisfiable in an enumerably infinite 

domain. 

It is worth noticing that Godel’s completeness theorem and Lowenheim's 

theorem now follow as corollaries, so that we obtain alternative proofs of 

these theorems, in which there is no use of the Skolem normal form or of §44. 

In the case of Godel’s theorem, this is seen as follows. Let A be any valid 

wff. Then by **430, the class whose single member is ~A is not simulta¬ 

neously satisfiable. Therefore by **453, this class is not consistent. Therefore, 

for some wff B, both ~A b B and —A b ~B. Therefore by the deduction 

theorem and P, I- A. 

EXERCISES 45 

4S*°« Carry through the proof of **440 (as given in §44) explicitly for the 

case that n = 0, making such simplifications as are possible in this special 

case, and verifying that the proof is sound also for this case. 

45.I. Establish **454, without use of **321 and **434, by showing 

directly that the process of proof from hypotheses, as defined in §36, pre¬ 

serves the property of having the value t for a given system of values of the 

free variables of the hypotheses (and for all values of the other free variables 
occurring). 

45-2. On the basis of the definition of validity (§43) and of the two proofs 

of **440 that are given in the text (§§44 and 45). discuss the questions, 

( ) whether **440 may be used as a derived rule of inference of the pure 

unctional calculus of first order, and (2) whether **440 may be used in the 

role of an axiom schema in a formulation of the pure functional calculus of 

first order. (See the discussion of the logistic method and the definition of a 

Ogistic system m §07, the distinction in §08 between elementary and theoret- 
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ical syntax, the introduction of the idea of derived rules of inference in §12, 

and the remarks of footnotes 183, 221.) 

45-3- Prove the completeness of the propositional calculus, in the formu¬ 

lation Pj, by applying the ideas used in the text in the proof of **452 and 

**453. Compare this completeness proof for the propositional calculus with 

the completeness proof of Chapter I, especially as regards the question of 

a stronger or weaker basis on which results are obtained (cf. the initial 

paragraphs of §08). 

45-4- Let a class/1 of wffs be given, and a particular valuation of -Tin the 

domain of natural numbers, i.e., with the natural numbers as the individuals, 

a particular system of possible values of the free variables of the wffs of T. 

And suppose that, for this valuation, every wff of T has the value t. Show 

that the method which is employed in §45 (in the proofs of **452 and **453), 

to obtain a valuation of T for which every wff of T has the value t, can be 

made to yield the given particular valuation of T by a suitable choice (a) 

of the enumeration of the wffs that is used, and (b) of the correspondence 

that is used, not necessarily a one-to-one correspondence, between the 

constants wmt„ and the natural numbers umtn. 

45.5. Let a class T of wffs be called disjunctively valid in a given non¬ 

empty domain of individuals if, for each valuation of /'in that domain, there 

exists at least one wff of T which has the value t. (1) If a class of wffs is 

disjunctively valid in an infinite domain, then the disjunction of some finite 

subclass of them is valid. (2) If a class of wffs is disjunctively valid in a 

finite domain, then the disjunction of some finite subclass of them is valid 

in that domain. 

46. The decision problem, solution in special cases. Though the 

decision problem of the pure functional calculus of first order is known to be 

unsolvable—in the sense that no effective decision procedure exists which 

suffices to determine of an arbitrary wff whether or not it is a theorem410 

there nevertheless exist solutions in a number of special cases411 which have 

♦“Alonzo Church in The Journal of Symbolic Logic, vol. 1 (1936), pp. 40-41. 101 102> 
Hilbert and Bemays, Grundlagcn der Malhematik. vol. 2, supplemen . 

««By a solution of the decision problem in a special case we mean that 
given a special class of wffs, an effective procedure to determmeofan^trary 
whether it belongs to this class (this will be obvious m most cas^disci 
and an effective procedure to determine of any wff of this class 
To this we seek Always to add an effective procedure by -h c^°reqTement is 
wff which has thus been ascertained to be a theorem-but tins last requi 

subject to the reservations that are indicated ,n *7^ decision problem 
(Added in proof.) A comprehensive treatment of TaseTofthe Decision 

in special cases is in Wilhelm Ackermann's monograph. Solvable Cases oj me 

Problem (1964). 
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some substantial interest. Some of the simpler of these will be treated in 

this section. 

We begin with a solution of the decision problem (due to Bernays and 

Schonfinkel) for the special case of: 

I Well-formed formulas having a prenex normal form such that, in the 

prefix, no existential quantifier precedes any universal quantifier. 

It will be sufficient, by §39, and *301, *306, to find a decision procedure 

for the universal closure of the prenex normal form of the wff. Hence the 

solution of this case of the decision problem is contained in the four following 

metatheorems: 

*460. Let M be a quantifier-free formula, and let b1( b2.b„ (n ^ 0) 

be the complete list of individual variables in M. If any afp of M is a 

tautology, 

h(3bl)(3bt)...(3b„)M. 

Proof. Sblbr;;b,M| is a substitution instance of the afp of M and is 

therefore a theorem by *311. Hence use *330 and modus ponens. 

**461, Let M be a quantifier-free formula, and let bI( b2.b„ (n ^ 0) 

be the complete list of individual variables in M. If 

h(3b1)(3b,)...(3bn)M. 

every afp of M is a tautology. 

Proof. Every afp of M becomes an afp of 

(3b1)(3b2)...(3bn)M 

upon prefixing 2« negation signs, ~. Hence use **320 and the truth-table 
of negation. 

•462. Let M be a quantifier-free formula, and let a1( a2. . . ., an, b1( ba 

• • •» b„ (m ^ 1, n ^ 0) be the complete list of individual variables 

in M. If the disjunction D of all the wffs423 

is a substitution instance of a tautology of P, where dt, d2.dn 

eviZSyTmLSri fn Th '‘ nt W“S arC CombiDed a disjunction is 
In ordcr toT^ke the dec .,1 commutative and associative laws of disjunction, 
(effective) w”y " Procedure debn^- * be fixed in some arbitrary 
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are any among the variables a,, a,, ..a,,, taken in any order and 

not necessarily all different, then 

Ha1)(a,)...(aJ(3b1)(3bI)...(3b.)M. 

Proof. By *330 and modus potions, 

S5;Sj:5;M|i-(3b1)(3bs)...(3b,)M. 

Hence by the deduction theorem and P, 

Db(3b1)(3bl)...(3bw)M. 

Therefore, since D is a substitution instance of a tautology, we have by 

*311 that 

I" (3b1)(3bl)... (3bn)M. 

Hence by generalization, 

b (a,) (a,)... (afB)(3b1)(3bJ)... (3b„)M. 

**463. Let M be a quantifier-free formula, and let a1( a,,..., am, b1( bt, 

.. .. bn (m ^ 1, n ^ 0) be the complete list of individual variables 

in M. If 

b (a,)(aj)... (am)(3b,)(3bt)... (3bn)M, 

then the disjunction D of all the wffsm 

SS|5ji mi 
is a substitution instance of a tautology of P, where dj, ds, • • •» d, 

are any among the variables ax, a,, ..., a,,, taken in any order and 

not necessarily all different. 

Proof. By *306 and modus potions, (3bx)(3b,) ... (3b,)M is a theorem. 

Therefore by **434 it is valid, hence, in particular, valid in a domain of m 

individuals uv ut,..., u„. 
Taking this finite domain of individuals, consider any system of possib e 

values of the free variables of (3bj)(3bt) .. ,(3b,)M such that the values o 

a„ a.. are u.«. respectively. For this system of valuta of its 

free variables (3b.) (3b,) . . . (3b.)M has the value t. Hence by the del- 

inition of value (rules d and f of §30). for this same system of values ot 

variables and for certain values ut , u(.u^ of bl( b2,..b, respec ive y, 

M has the value t. If d„ d.d. are chosen as a,, a,,.respectrvely. 

then 

M' 
has the value t. Therefore-stiU for the same system of values of the free 
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variables of (3b1)(3bJ) ... (3b„)M—the disjunction D has the value t. 

Since the free variables of D are the same as those of (3b|)(3bs).. .(3bn)M 

we have thus shown that—for this finite domain of m individuals, and for 

any system of possible values of the free variables of D such that a,, a2, 

..a,,, have the values i*j, ut.um respectively—the value of D is t. Now 

given any assignment of truth-values to the elementary parts of D,4*3 it is 

clear that (because the values of a1( a2,..am are all different) it will always 

be possible to choose the values of the propositional and functional variables 

of D in such a way as to reproduce the given assignment of truth-values to 

the elementary parts of D. Therefore D has the value t for every assignment 

of truth-values to its elementary parts. Therefore D is a substitution instance 

of a tautology of P. 

In *462 and **463, it is now clear that the condition that D is a substi¬ 

tution instance of a tautology is equivalent to the condition that 

(a,)(a,)... (am)(3bl)(3bt) ... (3bn)M 

is valid in a domain of m individuals. Also in *460 and **461, the condition 

that an afp of M is a tautology is equivalent to the condition that 

(3bl)(3b,)...(3bn)M 

is valid in a domain of a single individual. Hence we have the following 

corollary of *460-* *463: 

*464. Let M be a quantifier-free formula, and let a2__ am, blf b2, 

..b„ (m ^ 0, n ^ 0) be the complete list of individual variables 
in M. Then 

(»»)(«*) • • • (a*)(3b!)(3b,)... (3b„)M 

is a theorem if it is valid in a domain of m individuals, or, in the case 

m — 0, of a single individual. 

Since the definition of validity in a domain leads immediately to an effec¬ 

tive test for validity in any particular finite domain—and since, by **434, a 

theorem must be valid in all non-empty domains, including finite domains— 

we may regard *464 as stating an alternative form of our solution of the 

special case I of the decision problem. Indeed it is in this latter form that 

1- “is 
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the solution is more usually stated. And we shall introduce a corresponding 

form of statement of the solution (referring to validity in a specified finite 

domain) also in some other cases below. 

We turn now to consideration of another decision procedure, which is 

applicable in a variety of cases. It will be convenient first to state the de¬ 

cision procedure itself, before considering the question of characterizing a 

class of wffs to which it is applicable. 

A particular occurrence of a wff P as a wf part of a wff A is called an 

occurrence as a truth-functional constituent, or, as we shall also say, an occur¬ 

rence as a P-constituent, in A if it is not within the scope of a quantifier and 

does not have either of the forms ~B or [Bj 3 B2]. And tht truth-functional 

constituents, or the P-constituents, of A are those wffs which have occurrences 

as P-constituents in A. 

It is clear that each of the P-constituents of a wff either is an elementary 

part or else is of the form (a)B. Moreover, any wff can be thought of as 

obtained from a wff of P by substituting its P-constituents in an appropriate 

way for the propositional variables; and, for a particular wff, the wff of P 

and the required substitution are determined uniquely to within an alpha¬ 

betic change of propositional variables. 

As a first step in the decision procedure we are about to describe, we reduce 

(separately) each P-constituent of the given wff to prenex normal form, and 

if any of the P-constituents are then found to differ only by alphabetic 

changes of bound variables, we make the appropriate alphabetic changes 

of bound variables to render them identical.424 Let A be the wff so obtained. 

(Evidently the given wff is a theorem if and only if A is a theorem.) 

If A has just m different P-constituents. Pv P2>. ... P*.. then for each 

of the 2m different systems of truth-values of these P-constituents we may 

ascertain the corresponding truth-values of A. (The work of doing this may 

be arranged in the same way as described in §15 for the case of wffs of the 

propositional calculus.) If the value of A is found to be t for all systems o 

truth-values of its P-constituents, then h A by *311. Otherwise we Ust all 

the lalsifyine systems of truth-values of the P-const.tuents of A, i.e t e 

systems of truth-values for which the corresponding value of A is f. A 

tMIn practice .« will be desirable also ,o 

cations by propositional calculus that are seen {£: the matrix of each separate 

e ,or ,he bility of this, by the truth-table decision procedur (§ 
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then we make use of the following metatheorem, which has an obvious 

connection with the conjunctive normal form: 

•465. Where A is any wff, let the complete list of the P-constituents of A 

be Pj, P2.Pm, and let the complete list of falsifying systems of 

truth-values of the P-constituents of A consists in the systems of 

values tJ, t2.r^, of P1( P2.Pm respectively (i = 1, 2.n). 

Let Pj be P, or according as rj is t or f. Then h A if and only if 

all of the wffs 

are theorems. 

Proof. For every system of truth-values of P2, P2.Pm. the value of 

A is f if and only if the value of one of the wffs 

?! => • ^ => • • • Pm-I => -Pin 
is f. Consequently 

a= [p}=.piz>... Pi,_i=>-ps.][p;=>-p;=>• • pLi =>-pi] 

...[p-=).p-3....p^l =>•.?:] 
is a substitution instance of a tautology, and therefore a theorem by *311. 

Hence, by P, if b A, all of the wffs 

pj =. p‘z>.... pjL, =-Pi 

are theorems, and conversely, if all of these wffs are theorems, then h A. 

Thus the decision problem for A is reduced to the decision problem for 

the wffs 
p‘ —5 p< —, 
ri —5 ■ r2 —5 * 

P< 
* ’ • m-1 -Pin 

We deal with these latter wffs by reducing them to a prenex normal form, 

since decision procedure are known for wffs in prenex normal form with 

prefixes of various special kinds. According to the fixed procedure of §39 

for reduction to the prenex normal form, the quantifiers are taken one by 

one in left-to-right order and brought forward into the prefix. Here, however, 

we vary this fixed procedure by allowing the quantifiers to be taken (and 

brought forward into the prefix) also in any other order that is feasible. 

And we endeavor in this way to obtain a prefix of one of the kinds for which 

a decision procedure is known. E.g., if we succeed in obtaining, in all of the 

» cases, a prefix in which no existential quantifier precedes any universal 

quantifier, we are then able to decide whether A is a theorem by using our 

previous solution of the decision problem for the special case I. 
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In particular, such a reduction to the special case I can always be obtained 

when the foregoing procedure is applied to any one of the:445 

II Well-formed formulas in which every truth-functional constituent either is 

quantifier-free or has a prenex normal form that has only universal 

quantifiers in the prefix. 

We mention also the following subcase of II as of especial importance: 

II' Well-formed formulas in which there are no free individual variables and 

in which every truth-functional constituent either is quantifier-free (there¬ 

fore a propositional variable) or has the form (a)M, where M is quantifier- 

free and contains no propositional variables. 

In the subcase II' the two following simplifications of the decision proce¬ 

dure are possible, as it is left to the reader to verify: 

(1) Suppose that the P-constituents of A are numbered in such an order 

that Pj, P2, ..Pfc are the ones which are propositional variables, and the 

remaining P-constituents are Pt+1, Pk+2, . . .. pm- Then in applying *465 

we may simplify the conclusion of the metatheorem as follows: V A if and 

only if all of the wffs 

p< 
rt+i 

p< . rJt+2 p» 
• • • • 

~P 
m 

are theorems. 

(2) By alphabetic changes of bound variables we may suppose that A 

has been brought into such a form that only the one individual variable x 

occurs. Then Pk+1, Pk+2. .. .. pm have the forms (*)Mk+1, (*)Mt+2. 

(*)Mm respectively, where Mk+1, Mk+1.M. are quantifier free and 

contain no propositional variables and no individual variables other than x. 

From a particular falsifying system of truth-values x[, rj, • ••. of pi* p»- 

..., Pm select the last m-k truth-values ...rand among 

these suppose that r^, r*t,.. are t and x\x, x\%,..., are ^en in 

order that 

..•As a matter of fact, whenever such a reduction to the 

will always be possible also to reduce mor<& one in whose pre- 

prenex normal forms to which A can be reduced, Rnt bv makine use of 

fix no existential quantifier precedes any universal quan • *. V f.| hjch 

•465 in the way described, it is possible more easily to control.iteluM* Ptherwise. 

is obtained and often also, especially in case " * results in a reduc- 

tio^n^o” ne^t^speci^casCfTv-IxThatare^spil'atJhe^end^of.thte 

SS way solutions may b. obtained o, additional 

special cases of the decision problem. 
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shall be a theorem, it is necessary and sufficient that at least one of the 

quantifier-free formulas 

Mt, z> . =>.... Mu 13 M/# 

shall be a substitution instance of a tautology (/ = 1, 2,. .m — k — /). 

Returning to the general case of the above-described decision procedure 

(based on *465), we notice that, roughly speaking, the finer the division of 

A obtained by dividing A into its P-consticuents, the greater is the chance of 

success in determining by this procedure whether A is a theorem. Therefore 

before applying the decision procedure to a given wff A it may be desirable 

first to reduce A as far as possible by means of the reduction steps (a)-(g) 

of exercise 39.6.428 

In particular, as proved in exercise 39.6, if A contains none but singulary 

functional variables, the reduction process of that exercise suffices to reduce 

the universal closure of A to the case II' which we have just treated. This is 

Quine’s solution of the decision problem for the special case of: 

III Well-formed formulas of the singulary functional calculus of first order. 

The history of this case of the decision problem is described in §49. Besides 

Quine’s solution (which goes back to Behmann), another approach may be 

based on the following metatheorem of Bernays and Schonfinkel:427 

**466. If a wff of the singulary functional calculus of first order is valid in 

a domain of 2N individuals, where N is the number of different func¬ 

tional variables appearing, then it is valid in all domains of individ¬ 
uals. 

Proof. We may suppose, by **432, that the given wff has no free individual 

variables. Let the propositional variables appearing be p|( pa, . . ., p, and 

“•The reduction process may be shortened by adding corresponding reduction steps 
or connecUves other than implication and negation, so as to be able to deal directly 

J in ,?n»KKa ^of D3“n wel1 “ D14) rather than first to rewrite 
also K^fo»nHV,at1d/0rm‘ fuI1 d's)unctive and full conjunctive normal forms may 
full disi.,nr^SefU ’ *?39'8’ ?r ^ implicative normal form (15.4) may replace the 
^ f°rm’ and *e m normal form may be used in the 
PrSSs in thl m^f a,?Pear? m thC Pr°°f °f *465- Deta,ls of organizing the reduction process in the most efficient manner are left to the reader 

advantaeeoufthi0 Procedure of •*466 is generally longer and therefore less 
long in comDaratfvPlQU-ne But even Qu,ne s procedure may become forbiddingly 
to 46 12?37P y S,mP‘e CaSCS’ M the reader ^ see by aPP*ying it. for instance. 
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the functional variables, fx, f2, . .fw; and consider a system of values 

Tj, r2,. .r,, 0j, 02, . . 0N of these variables in order, the domain of in¬ 

dividuals being some arbitrary non-empty domain U. Let the individuals 

of U be divided into classes by the rule that wx and ut belong to the same class 

if and only if the truth-values 01(«I), 02(Mj).0w(wx) are identical with 

the truth-values 01(«2), 02(w2),. .0Ar(«2) respectively. Thus are obtained 

at most 2n non-empty classes of individuals, call them vv v2.vn 

(1 ^ n ^ 2n). And let singulary propositional functions Pv P2,..., *PN 

of these classes be defined by the rule that !P^v,) is the same truth-value as 

0,(m), where u is any member of the class vf. 

Now we may take also the finite domain 58, consisting of the individuals 

v1,v2.vn and consider the values tx, r2,..., t,, Pv P2, ..PN of 

Pi- Pz- • • •> Pi- *i> U.respectively. For this system of values of its 

free variables the given wff has the value t (because, being valid in a domain 

of 2s individuals, it is by **439 valid in the domain S3)- But from the way 

in which the propositional functions V', were defined it follows that the given 

wff has the same value for the domain S3 and for the system of values 

T1( t2, . . ., Tj, Px, !P2, ..., PN of its free variables that it does for the domain 

U and for the system of values tx, r2.r,. 0,, 02...0* of s ^ree 

variables. Therefore the value of the given wff is t also for the domain U 

and for the latter system of values of its free variables. 

Thus we have shown about the given wff that its value is t for an arbitrary 

system of values of its free variables and for an arbitrarily chosen domain U- 

I.e., we have shown that it is valid. 

It will be observed that **466 is stated not as a solution of a special case 

of the decision problem (i.e., of the decision problem for provability) but 

rather as a solution of a special case of what we shall call the decision prob¬ 

lem for validity, i.e., the problem of finding an effective procedure to deter¬ 

mine validity. 
By Godel’s completeness theorem (as proved in §44, and by another 

method in §45) it is true in one sense that a solution of a special case of the 

decision problem for validity is also a solution, in the same special case, of 

the decision problem. But in another sense—which we have not attempted 

to make precise—this is not true, as may be seen from the fact that the proo 

of **466 provides no effective method of finding a proof of a wff A which 

passes the test of containing none but singulary functional variables and 

being valid in a domain of 2N individuals.428 

“•On the other hand, our demonstration of Quine's solution of the special case III 
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Closely related to the decision problem for validity is the decision problem 

for satisfiability, i.e., the problem of finding an effective procedure to de¬ 

termine satisfiability. By **430 and **431, every solution of a special case 

of either of these problems leads to a solution of a corresponding special 

case of the other, so that the two problems need not be considered separately. 

In much of the existing literature on the subject, it is the decision problem 

for satisfiability to which attention is primarily given. And apropos of the 

importance of this problem it should be observed that (by Godel's complete¬ 

ness theorem) the consistency of a logistic system obtained by adding postu¬ 

lates4” to a simple applied functional calculus of first order is always equiv¬ 

alent, in an obvious way, to the satisfiability of a corresponding wff of the 

pure functional calculus of first order. 

The pure functional calculus of first order becomes a formalized language 

upon adopting one of the principal interpretations (§30). The domain of indi¬ 

viduals on which the interpretation is based may be either infinite or finite. In 

the former case the semantical decision problem of the language (as defined in 

§15) is equivalent to the decision problem for validity, in the sense that any 

solution of a special case of either problem is also a solution, in the same special 

case, of the other. In the latter case the semantical decision problem of the 

language is equivalent to the decision problem for validity in the same finite 

domain and is therefore completely solved (on the assumption that the finite 

domain is given in such a way that the number of individuals is known). 

We shall not here treat further the question of special cases of any of these 

decision problems, but we conclude merely by recording the existence of 

solutions of the decision problem or of the decision problem for validity in 

each of the following cases (either explicitly in the literature or easily ob¬ 

tained by methods existing in the literature):430 

of the decision problem does (implicitly) provide such an effective method of finding a 
proof of a wff which passes the test. In order to accomplish this also in connection with 
the Bernays-Schbnfinkel solution of case III, the method may be followed which is 
suggested below in exercise 40.1. 

4,’Compare §55, as well as the discussion of the axiomatic method at the end of §07. 
‘“See Wilhelm Ackermann in the Mathematische Annalen, vol. 100 (1928), pp. 

638-049; Thoralf Skolcm in the Norsk Matematish Tidsskri/t, vol. 10 (1928), pp. 
26-142, Jacques Herbrand in the Comptes Rendus des Seances de la Sociitt des Sctences 

ct des Uiive%dc Varsovle, Classe III, vol. 24 (1931), pp. 12-66; Kurt Gddel in Monger's 
brgebnisse exnes Mathematischen Kolloquiutns, no. 2 (lor 1929-1930, published 1932). 
pp. 27-28; L4szl6 Kalm&r in the Mathematische Annalen, vol. 108 (1933), pp. 466-484; 
GOdel in the Monatshe/te fiir Mathematik und Physik. vol. 40 (1933), pp. 433-443; 

lia^im^ ^ thC Mathtmaiische Annalen. vol. 109 (1934), pp. 572-603, and vol! 
11U iia_looPP‘ 16l“194: Ackermann in the Mathematische Annalen, vol. 112 (1936), 

Whenever in these papers the results arc given in the form of solutions of special 
cases of the decision problem for satisfiability, they may be restated as solutions of 
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H ell-formed formulas A such that i n each elementary part at most one 

variable has occurrences at which it is a bound variable of A. 

Well-formed formulas having a prenex normal form in which the matrix 

satisfies the condition of being a disjunction of elementary parts and 

negations of elementary parts or equivalent by laws of the propositional 

calculus to such a disjunction.*31 

Well-formed formulas having a prenex normal form with only one 

existential quantifier in the prefix, i.e., with a prefix of the form 

(ai)(a2)... (am)(3b)(c1)(c2)... (c,).432 

Well-formed formulas having a prenex normal form with a prefix of the 

form (a,)(a2) .. . (am)(3b1)(3b2)(c1)(c2) .. . (c,) 

Well-formed formulas having a prenex normal form with a prefix of the 

form (ax)(a2) ... (am)(3b,)(3b2) ... (3b.)(q)^) ... (ct) and a 

matrix in which every elementary part that contains any of the variables 

bj, b2, . . ., bn contains either all of the variables b1# b2, . . bn or 

at least one of the variables clf c2, . . cr434 

corresponding special cases of the decision problem for validity, and for the sake of 
uniformity in summarizing the results we have done this systematically. The decision 
problem in the sense of footnote 421 is dealt with explicitly only by Herbrand. 

4,1This case is solved by Herbrand. loc.cit. An equivalent condition on the matrix is 
that it shall have the form Ax ZD • A, ZD •. . . A^j ZD An. where n ^ 1 and each A, 
(t = 1, 2, . . . , n) is either an elementary part or the negation of an elementary part, 
or shall be equivalent by laws of the propositional calculus to a matrix of this form. 
Still another equivalent condition is that the value of the matrix shall be f for at most 
one assignment of truth-values to the elementary parts. 

4J,Ackermann, Skolem, and Herbrand. loc.cit. According to Ackermann (1928), a 
wff of class VI which contains no free individual variables and no functional variables 
that are more than binary is valid if it is valid in adomainof m + ((m/ + /)*— l)/(m* + 
/ — 1) individuals, where N is the number of different functional variables appearing 

and 
v = 3 x 2^(2m+1Hfn+1),/l + 1. 

Or in case m = 0, / = 1, the wff is valid if valid in a domain of 3 x 2^ individuals. 
If ternary or higher functional variables appear, then a similar result may be found by 

Ackermann's methods. . 
This provides a strictly theoretical solution of case VI of the decision problem or 

validity, and is hardly available for use in practice. A more practicable decision proce¬ 
dure, however, may be obtained from any one of the three papers, and is indicate in 

exercises at the end of this section. . . 
4”G6del, KalmAr, and Schiitte. loc.cit. According to Schutte, a wff of class VII tnat 

contains no free individual variables is valid if it is valid in a domain of m -f- 
individuals, where N is the number of different functional variables appearing, none 01 

the functional variables is more than A-ary, and 

v = Nli2fl(m + l)**4. 

Again there is a more practicable decision procedure which may be obtained from 

the papers of Gbdel or that of KalmAr. 
4,4Skolem, loc.cit. 

IV 

V' 

VI 

VII 

VIII 
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IX well-formed formulas having a prenex normal form with a prefix ter¬ 

minating in (ct) (ca) . . . (c,) and a matrix in which every elementary 

part that contains any of the variables occurring in the prefix contains 

at least one of the variables Cj, c2, . . c,.434 

X W ell-formed formulas of the form (aj)(a2) . . . (an)M id (9b)(c)f(b, c), 

where n 5S 4, and M is quantifier-free and contains no variables other 

than f, a2, a2> . . an.435 

Treatment or partial treatment of all of these cases except VII and X 

will be indicated briefly in exercises which follow at the end of this section, 

as well as of some other cases of lesser importance. 

In most of the cases it is possible to put the solution of the decision prob¬ 

lem for validity in the form that, if a wff of the class in question is valid in 

a domain of a specified finite number of individuals, then it is valid (though 

this is seldom the most efficient form of the solution for use in practice, 

i.e., in applying the decision procedure to particular wffs). Case X is of some 

interest as an exception to this. For it includes wffs that are valid in every 

finite domain without being valid in an infinite domain, as may be shown 

by the example 43.5(2). 

EXERCISES 46 

46.0. In order to establish the simplified decision procedure for case II' 

of the decision problem, prove the rules (1) and (2) which are given above in 

connection with this case. 

46.1. (1) Consider a wff A of the singulary functional calculus of first 

order (case III) and let the different functional variables appearing in A be 

tv I*. • • •, tN. We may suppose, by **432, that there are no free individual 

variables in A. According to Quine’s solution of case III of the decision prob¬ 

lem, as described above, the reduction process of exercise 39.6 is first to be 

applied to A. By a modification of this reduction process, show that A may 

be reduced to a wff B such that h A = B, and all the P-constituents of B 

other than propositional variables are of the form (x) . D, id . D2 id . 

• • • ®n- 1 where each D, separately is either f,(x) or ~f,(x) (» = 1, 2, 

..N). But only 2* different P-constituents of this form are possible. 

Hence prove **466 by applying to B the decision procedure of case II'. 

A th*s^fa! ‘AS *,n Ackermann‘s paper of 1936, cited in footnote 430. 
appUcrtto?InP Ackermann's decision procedure, reducing its length for 

jrrBp“d -ith 
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(2) Show also that h A if and only if in every falsifying system of truth- 

values of the P-constituents of B all the P-constituents other than propo¬ 

sitional variables have the value t. 

46.2. Apply Quine’s solution of case III to each of the following wffs: 

(1) (3 x)(y).F(z) = pz> mF{y) = p 

(2) (3z)(y).F(z) = F(y) 

(3) (3x)[F(z) 3 G(x)] = (3*)(3y)[F(z) id G(y)) 

(4) «« F(x) 3X [F(y) 3 G(z)] 3 . p 3 . (x)F(x) 3 G(y) 

(5) (3a:)(3y)(^1)(z2) . F(y) 3 G(z,) 3 G(x) -Ffo) 3 . 

F(x) v G(x) 3 H(x) 3 H(z2) . H(y) 3 . F{z2) v G(zt) 3 H(z2) 

46.3. Solve case IV of the decision problem by employing the same 

reduction process (cf. exercise 39.6) as in Quine’s solution of case III. 

Illustrate by using this method to determine which of the following wffs are 

theorems: 

(!) (3*)(y,)(y2) . ~F(x, z) 3 F(z, yj 3 . F(yt, z) 3 F(z, y2) 

(2) (3z)F(x, z) 3 (z)G[x. z) 3 . [z)[G(z, z) 3 F(z, y)] 3 ,F(x,y) = (z)G(x.z) 

46.4. Solve case IV of the decision problem by reducing it to case III, 

finding for every wff A of class IV a corresponding wff of class III which is 

a theorem if and only if A is a theorem. (Suggestion: Make use of the idea of 

replacing each elementary part of A by an elementary part involving only a 

singulary functional variable.) Check your solution by applying it to the 

two following wffs and verifying that the same results are obtained as when 

the decision procedure for case I is applied to them: 

F(x, y) 3* F(y, x) 3 - . F(x, y) 3X ~F(y, x) 

F(x, y) 3 F(y, x) 3X G(x, y) 3 - . F(x, y) 3 F(y, x) 3X y) 

46.5. As explained above, every solution of a special case of the decision 

problem for validity leads to a solution of a corresponding special case of the 

decision problem for satisfiability. State special cases of the decision problem 

for satisfiability which thus correspond to cases I-IV of the decision problem 

for validity; and state a decision procedure for each of them, directly (i.e., 

without referring to decision procedures for cases I-IV of the decision prob¬ 

lem for validity). 
46.6. Let case VIJ be the subcase of case VI in which there are no free 

individual variables, and m = 0, / = 1. I.e., in case VIJ the given wff 

«*This is a modified form of an example used by Quine. 
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has as prenex normal form (3b)(c)M, where M is the matrix and contains 

no individual variables except b and c. 

Suppose that no propositional variables appear and the only functional 

variable appearing is a binary functional variable f. Taking the positive 

integers as the domain of individuals, consider the following attempt to 

find a value of the functional variable f for which the value of A is f (false¬ 

hood). For the value 1 of b we must find a corresponding value of c for which 

M has the value f, and we may suppose without loss of generality that this 

corresponding value of c is 2. The (distinct) elementary parts of M are some 

or all of f(b, c). f(c, b).f(b, b). f(c, c); by assigning appropriate truth- 

values to these we can, in 0 or more ways, give to M the value f. Thus, if 

0 is the propositional function which is to be the value of f, we determine the 

possibilities as to what 0(1, 2), 0(2, 1),0(1, 1),0(2, 2) may be. Then we 

must consider also the value 2 of b and find corresponding to it a value of c 

for which M has the value f. Without loss of generality we may suppose that 

this new value of c is 3. Again we consider the truth-values to be assigned to 

f(b, c), f(c, b), f(b, b), f(c, c) so as to give to M the value f; and thus we 

determine the possibilities as to what 0(2, 3), 0(3, 2), 0(2, 2), 0(3, 3) may 

be. This gives us two separate determinations of what 0(2, 2) is to be, and 

it is seen that there are the following alternatives, (i) It may happen that 

the two determinations of the value 0(2, 2) ci 0 cannot be reconciled with 

each other by using any of the possible assignments of truth-values to 

f(b, c), f(c, b), f(b, b), f(c, c) that give to M the value f (either by using the 

same assignment of truth-values to f(b, c), f(c, b), f(b, b). f(c, c) both 

times or by using two different assignments); then A is valid, (ii) It may hap¬ 

pen that the two determinations of the value 0(2, 2) of 0 can be reconciled 

with each other; then we may go on to find corresponding to the value 3 of 

b a value 4 of c for which M has the value f, and corresponding to the value 

4 of b a value 5 of c for which M has the value f, and so forth; because no 

further hindrance can be encountered, it follows that A is not valid. Thus 

the issue depends on whether or not it is possible to find a value 0 of f such 

that M has the value falsehood both for the values 1, 2 of b, c and for the 
values 2, 3 of b, c. 

(1) Supply details of the argument which is outlined in the preceding 

paragraph, and complete it so as to show that A is valid if and only if the 
disjunction 

S*;Ml v s!! Ml 

IS a substitution instance of a tautology, or, as we shall say, if and only if 
this disjunction is tautologous. 
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(2) Extend this result to the more general subcase of case VIJ in which 

any number of propositional variables appear and a single functional vari¬ 

able (not necessarily binary). I.e., show in this case also that A is valid if 
and only if the disjunction 

sbc M| vS 
b c 

**** 

is tautologous. 

(3) Complete the solution of this special case of the decision problem by 

stating explicitly a proof of A if the foregoing disjunction is tautologous. 

46.7. By the same method solve the further subcase of case Vlj of the 

decision problem in which there appear any number of propositional varia¬ 

bles and just two functional variables. Show in this case that A is a theorem 

if and only if the disjunction 

Ml v S^, M| v S*;t M| v S2b; M| 

is tautologous. 

46.8. By the same method solve case VlJ of the decision problem. 

Namely, show that A is a theorem if and only if the disjunction 

sbc M| v S 
b c 

M| v ...v S 
*tNxtN+i 

is tautologous, where N is the number of different functional variables 

appearing. 

46.9. Apply the decision procedure of 46.6-46.8 to determine which of 

the following wffs are theorems: 

(!) (3x)(y). F(x, y) = F[x, x) z> . F(x, y) = F(y, y) 

(2)437 (3x)(y) . F[x, x) id F(y, y) id F(x, y)G(x) id G(y) 

(Notice that it is not asked to write out explicitly the proof of a wff which 

is found to be a theorem. Therefore instead of making use of the disjunction 

which, according to 46.6-46.8, is tautologous if and only if the given wff is 

a theorem, it may often be found more convenient just to follow through the 

same procedure by which this disjunction was obtained, i.e., the procedure 

described in the second paragraph of 46.6, or a suitable generalization of 

this procedure.) 
46.IO. As a corollary of 46.8 establish the result of Bemays and Schon- 

finkel that, in case Vlj, A is valid if it is valid in a domain of 2^ individuals, 

where N' is the number of different functional variables appearing or the 

number 2, whichever is greater. 

4,,This is essentially the same as one of Skolem s examples. 
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46.II. The method used in 46.6-^6.8 to solve case VI* of the decision 

problem can as a matter of fact be extended to solve case VI in general.438 

(1) Use this method to solve the case VIJ, in which the given wff A has 

a prenex normal form (3b)(c,)(c8)M, where M is the matrix and contains 

no individual variables except b, c,, c8. Show in this case that A is a theorem 

if and only if the disjunction 

is tautologous, where N is the number of different functional variables 

appearing and 

u = 2^-1. 

(2) Use this method to solve the case VlJ, in which the given wff A has a 

prenex normal form (a)(3b)(c)M, where M is the matrix and contains no 

individual variables except a, b, c. Show in this case that A is a theorem if 

and only if the disjunction 

S»bc Cibc ... c»bc 
— M| v S^MI v S. mivs;^4miv...vslV_icvM| 

is tautologous, where v is the sum of the weights of the different functional 

variables that appear, the weight of an A-ary functional variable f being 

the number of different wffs of the form f(d1( d8, . .., dA) which occur as 

elementary parts in S£M|, with the exception of the one wff f(a, a, ..a) 

(which is not to be counted). (Taking the natural numbers as the domain of 

individuals, attempt to give to A the value f; for this it is sufficient to find 

one value of a for which the value of (3b)(c)M is f, and it may be supposed 

“•The close relationship should be noticed between this method and the method 
which was later used by Gddel in his proof of completeness of the functional calculus 
of first order. Indeed the disjunctions which are used in 46.6-46.8 and in 46.11(1) are 
the same as the disjunctions C. of §44, each for a certain particular value of A. 

In working with part (1) of exercise 46.11, it is recommended that the reader replace 
the notations, 

s£SM1, and so on, 

by the simpler notations MxlX^xt. and so on. Similarly, in part (2) the no¬ 
tations. 

S*^M|, S^fMI, and 
“1*1 

so on. 

may be replaced by Mxxx,. Mr*,*,, and so on respectively. This simplified notation 
for substitution, essentially that of the Hilbert school, may conveniently be used in a 

amtext in which all substitutions are for the same list of variables, and especially when 
it is always a variable (or other single symbol) that is substituted for each variable. It 
will be useful also in connection with the exercises immediately following, and at many 
other places. However, in the text we shall retain the more explicit notation for substi- 
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without loss of generality that this value of a is 0; then proceed as in 46.6, 

or as in 46.8.) 

46.12. Apply the decision procedures of 46.11 to determine which of the 

following wffs are theorems: 

(1) (3x)(y)(*) , 
■ P(y, 2) 3 [G{y) 3 H(x)] 3 F(x, x) 3 . 

F(z, x) 3 G(x) 3 H{z) 3 . F(x, y) 3 F(z, z) 

(2) (*)(3y)(*)- ■ P(y. *) 3 [F(x, z) 3 F(x, y)]. 

F(x, y) 3 . ~F(x, z) 3 F(y, x m*. y) 

(3) (3x)(y)(z) . ■ P(y) 3 G(y) = F(x) 3 . F(y) 3 H{y) = : G(x) 3 . 

F(y) 3 G(y) 3 H(y) = H(x) 3 F(z)G(z)H(z) 

46.13. As remarked by Skolem in 1928, the same method may also be 

extended to cases in which there is more than one existential quantifier. 

Take as an example the case of the prefix (3b,)(3b2)(c). In connection 

with the prefix (3b) (c), we used the following successive pairs of values of 

the variables b, c: <1, 2>, <2, 3), <3, 4), <4, 5>, and so on indefinitely 

Similarly, in connection with the prefix (3b!)(3b2)(c), we may parallel the 

method of 46.G-46.8 as closely as possible, using the following successive 

triples of positive integers as values of the variables b2, b2, c: <1, 1,2); 

<1,2, 3>, <2, 1, 4>, <2, 2. 5>; <1. 3, 6>, <3, 1. 7>, <2. 3.8>, <3, 2,9>, <3,3,10); 

<1, 4, 11>, <4, 1,12), <2. 4, 13). <4, 2, 14). <3, 4. 15), <4, 3. 16), <4, 4, 17); 

<1, 5, 18), <5, 1, 19), <2, 5, 20), <5, 2, 21), <3, 5, 22), <5, 3, 23). <4, 5. 24). 

<5, 4, 25), <5, 5, 26); <1,6, 27), <6, 1, 28).The enumeration of the or¬ 

dered pairs of positive integers which is here employed has been modified, 

as compared to that used in §44. But this modification is non-essential from 

the point of view of §44, and we may therefore take the wffs C* of §44 as 

modified correspondingly, i.e., by using the modified enumeration of the 

ordered pairs of positive integers. If in a special case we can find a particular 

value Koik about which we can prove that either CK is tautologous or none 

of the wffs Cfc is tautologous, then a solution of this special case of the de¬ 

cision problem follows by direct application of the methods of §44.4 

(1) Apply this method to solve case V" of the decision problem, in which 

the given wff A is in Skolem normal form and at the same time satisfies the 

conditions of case V'. Show in this case that K = (l + l)n. where n is the 

number of existential quantifiers in the prefix, and / the number of umversa 

quantifiers. (Make use of the fact that M has the value f for at most one 

system of truth-values of its elementary parts.) 

4WFor the assistance of the reader we add the following table, the significance o 
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(2) Apply this method to solve the subcase IX' of case IX in which there 

are no free individual variables and the prefix is (3b1)(3ba) . . . (3bn)(c1) 

(Cj) .. . (Cj), showing in this case that the given wff A is a theorem if and 

only if 

sb;b;::bb; mi 
is tautologous. 

which will be clear by analogy with the explanation given in 46.8: 

bi *>, c ||f(b„ b,> |l|bt, b,) |f(bt. b,) |f(b„ b,) | l(b,. c) 

0(1,1) 0(1.1) 0(1.1) 0(1.1) 0(1.2) 

3 2 9 

3 3 10 

4 1 12 

2 4 13 

4 2 14 

5 
4 3 16 

4 4 17 

6 18 

1 19 

2 6 20 

2 21 

3 6 22 

3 23 

4 6 24 

6 4 25 

5 5 26 

1 6 27 

6 1 28 

2 6 29 

0 

0 

0 

0(1.1) 0(3.3 

0(3.3) 0(1.1 

0(2,2) 0(3.3 

0(2,1) 0 

0(1.2) 0 

0(2.2) 0 

1.3) 0(3.1 

3.1) 0(1,3 

2.3) 0(3.2 

0(3.3) 0(2.2) 0(3.2) 0(2,3 

0(3.3) 0(3.3) 0(3,3) 0(3,3 

0(1.1) 0(4.4) 0(1.4) 0 

0(4,4) 0(1.1) 0(4,1) 0 

0(2,2) 0(4.4) 0(2.4) 0 

0(4.4) 0(2.2) 0(4,2) 0 

0(3.3) 0(4,4) 0(3,4) 

0(4.4) 0(3,3) 0(4,3) 

0(4.4) 0(4.4) 0(4.4) 

0(1,1) 0(6,6) 0(1,5) 

0(5.5) 0(1.1) 0(6.1) 

0(2,2) 0(6.5) 0(2,5) 

0(5.5) 0(2,2) 0(5,2) 

0(3.5) 

0(5,3) 

0(4.5) 

0(5.4) 

0(5.5) 

0(1,1) 0(6.6) 0(1,6) 0(6.1) 0(1,27) 

0(6,6) 0(1,1) 0(6,1) 0(1,6) 0(6.28) 

0(2,2) 0(6.6) 0(2,6) 0(6,2) 0(2.29) 

t(c. bt) 

0(2.1) 

0 

0 

0 

0(6.1) 

7.3) 

8.2) 

9.3) 

10,3 

U.1 

0 

0 

0 

0 

0 

0 

0 

0(14.4) 

0(16.3) 

0(16.4) 

0(17.4) 

0(18,1) 

0(19.5) 

0(20,2) 

0(21.5) 

0(22,3) 

0(23,5) 

0(24.4) 

0(25.5) 

0(26,5) 

0(27.1) 

0(28,6) 

0(29.2) 

fib,, c) 

0(1.2) 

3.6) 

1.7) 

3.8) 

2.9) 

3.10 

4.11 

1.12 

4.13 

*(c, bt) f(C, C) 

0(2,1) 0(2,2) 

0(6.27) 

0(1.28) 

0(6.29) 

6.3) 

7.1) 

8.3) 

9.2) 

10.3 

11.4 

0(12.1) 

0(13.4) 

0(14.2) 

0(15,4) 

0(16,3) 

0(17,4) 

0(18.6) 

0(19.1) 

0(20.5) 

0(21.2) 

0(22,5) 

0(23.3) 

0(24,5) 

0(26.4) 

0(26,5) 

0(27,6) 

0(28,1) 

0(29.6) 

0(10.10) 

0(13,13) 

0(14.14) 

0(15,16) 

0(17,17) 

8 

0(21,21) 

0(22,22) 

0(24,24) 

0(25,25) 

,0(26.26) 

0(27,27) 

0(28.28) 

0(29,29) 
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(3) Apply this method to solve the subcase VIII*’1 of case VIII, in which 

there are no free individual variables and the prefix is (3b1)(3b2)(c). 

(i) On the hypothesis that there is only a single binary functional variable 

appearing, supply a quantifier-free disjunction, as short as possible and not 

necessarily one of the wffs C*, such that the given wff A is a theorem if and 

only if this disjunction is tautologous. Do the same thing also on the hypoth¬ 

esis: (ii) that there is one binary functional variable appearing and any 

number of singular}' functional variables; (iii) that there are just two binary 

functional variables f and g appearing and that the only elementary parts 

which occur are f(blt b2), g(bj, b2), f(blt c), g(b2, c), f(c, c), g(c, c). Then 

(iv) show how to solve case VIII*-1 generally, not necessarily seeking the 

shortest decision procedure or the smallest number K, but establishing the 

success of the method by finding an upper bound of K.**° 

(4) Apply this method to solve the subcase VIII0 of case VIII, in which 

there are no free individual variables and m = 0. (Again find an upper bound 

of 

to be deleted. For part (4) the reader should construct a new table, similar to thatjor 

part (3) but involving a greater number of individual variables (the case n = 3, / — 2 

may be taken as illustrative). 
In any of these tables, let two rows be called related if there is at least one entry, 

consisting of <Z> (or {F. etc.) with particular numbers as arguments, that appears in both 

rows. For example, in the table used for part (1). the first and fifth rows are related, and 

the fifth and ninth rows are related, but the first and ninth rows are not related. In tne 

table used for part (3). the first, second, and third rows are mutually related: also tne 

first and fourth rows are related, but not the second and fourth rows or the first ana 

In the tables for parts (3) and (4). it will be seen that each row is related to the! rows 

obtained by a permutation of the values assigned to b,, bt, . . ., an a. • „ 
each row is related to at most one earlier row of the table. Use may be made of this in pr g 

the existence of the number K. or in finding an upper bound of K 
*«For the solution of case VIIIJ.‘. one approach is the following. (We state tn 

matter for this particular subcase, but it will be seen that the same idea is applicant 

to case VIII., and indeed to case VIII generally.) , 
In the table constructed as described in the preceding footnote, let a ro 

single-row if the values assigned to b, and b, are the same (e.g., the fi . . row8 iet 

the fourth row. and the ninth row are single-rows)And cxMptiiig . . | -jng the 
each row of the table be associated with the rowobtained from* bya 

values assigned to b, and b„ and let the resulting pair of ,[£ewi Jthe fifth 
row-pair (e.g., the second and third rows in the table a row-pair hl ^ dass 
and sixth rows, and so on). For any s.ngle-row, taken in isolation, there tQ M 

C, of possible assignments of truth-values that falsi Y truth-value must 
the value f) and at the same time satisfy the condition.thatthe»ne trutb^ identical 

each row)Cthatfalsifyand*at'the same time satisfy the condition that the same 
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46.14. Apply the decision procedures of 46.13 to determine which of the 

following wffs are theorems: 

(1) (3x)(3t/)(z) . F(x, x) zd . F(y, y) zd . F(x, z) zd F(z, y) 

(2) (3x)(3y)(z) . F(x, z) = F(z, y) r> . F(z, y) = F(z, z) zd . 

F(x, y) = F(y, x) zd . F(x, y) = F(x, z) 

(3) (3z)(3y)(z) . F{x, z) 0 . F(y, z) zd . F(x, y) = F{z, z) zd . 

F(y, x) v F{z, z) => . F(z, x) v F(z, y) 

(4) (3x)(3t/)(z) . F(x, y)F(y, x) =$= F(x, z) zd . F(x, z) = F(z, x) zd . 

F(x. z) = F(y, z) ZD . F{y. x) zd F(x, y) = F(z, z) zd . 

F(x, y) = F(y, x) = F(z, y) 

(Answer: (4) is a theorem.) 

(6) (3x)(3y)(z) . F(x, y) zd F(y, z)F(z, z) . F(z, y)G(x, y) zd G{x, z)G(z, z) 

truth-value must be assigned to any two elementary parts, one in each row, which can 
be obtained one from the other by interchanging b, and b,. Let S, be a non-empty 
subclass of Ci, and let S, be a non-empty subclass of Ct. 

It is necessary to consider five different patterns of correspondence that occur 
between a single-row or row-pair in the table and an earlier (related) single-row or 
row-pair. These are, namely, the patterns which appear: (i) in the correspondence 
between the fourth row and the first row in the table (or between the twenty-fifth row 
and the fourth row, or between the hundredth row and the ninth row, and so on); 
(ii) in the correspondence between the row-pair consisting of the second and third rows, 
on the one hand, and the first row, on the other hand; (iii) between the row-pair con¬ 
sisting of the fifth and sixth rows, on the one hand, and that consisting of the second 
and third rows, on the other hand; (iv) between the row-pair consisting of the seventh 
and eigth rows, on the one hand, and that consisting of the second and third rows, 
on the other hand; (v) between the ninth row and the row-pair consisting of the second 
and third rows. 

In case (i) we must ascertain that, for an arbitrary member of S, used as the assign- 
ment °f truth-values in the earlier single-row. there is a corresponding member of S, 
which may be used simultaneously as the assignment of truth-values in the later single- 

feJ“^ r must ascertain that, for an arbitrary member of S. used as the assign- 
nt of truth-values in the single-row. there is a corresponding member of S. which may 

ta“eOUS,y “ the alignment of truth-values in the row-pair. In each of 
mTt aiJXl WC,mUSt “cKcrtain,that- tor a" arbitrary member of S, used as the assign- 
w£"S^r ,n ear Ier row-Pair- ,s a corresponding member of S, 
oair I„m*Lbe,Urd s,multaneousry as the assignment of truth-values in the later row- 
SnmeSTof’'tr.'Ih "T ascer^in that- for an arbitrary member of S, used as the 
which mav k! C Hto'Val.Ue3 m ,hC row-Pair* there *s a corresponding member of S. 

sTneTc and C ^ r0? “ ass,ignment of truth-values in the single-row* 
cli ofVc T num<ber of different P*" S» S. of non-empty sub- 
sTsTmav be written'rlnum' °f Particular wff A the complete list of pairs 

<StaSand for each such pair S„ S, it may be determined whether 

wff A ,ed‘ ” V2 Pair S*is found for which th*e con- are satisfied, the wff A is non-valid; in the contrary case. A is valid. 
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(6) (3x) (3y) (z) . F(x, y) 3 [F(x, z) = G(y, z)] 3 . 

F(x, y) = [F{z, z) 3 G(z, z)] 3 . G(x, y) = G(z, z) 

(7) (3*) (3y) (z) .F(x.z) => . F(z, z) 3 G(z, z) = F{x,y) 3 . 

G(z, z) 3 F(z, z) = G(x, y) 3 . G{x, y) 3 F(y, a;) = G(y, z) 3 . 

F(z, y) = F(y, x) 

46.15. Extend the method of 46.13 (1) (compare also 46.11 (2)) to solve 

case V' of the decision problem. First work out the method in application 

to the following particular examples: 

(1) (x) (3t/j) (3y2) (2) . F(x, z) 3. F(yv z) 3 . F{y2, z) 3. F(yv x) 3 F(z, y2) 

(2) (*i)(**)(3y)(*) • F(z 1. y) 3 . F(z, Xi) 3 • F(z, y)3 F(x2, y) 

(3) (3*)(y)(3z) - F(x, y) 3 .F(z, x) 3 F(y, y) 

(4) (3x)(y)(3z). F{x, y, z) 3 F(y. z, z) 

(5) (3*)(y)(3zx)(32t). F(x, y, zv z2, Zj) . 3 F(zv x. y. zv z2) 

(6) (3x1)(x2)(3x8)(x4) .F(Xi,; *s) 3 F(x3, Xj, x4) 

(7) (xi)(3x2)(xs)(3x4). F(xi, x2- Xi) 3 F(x4> x4. X!) 

Then (8) state the method in general and show that it provides a solution of 

case V' of the decision problem for validity. Finally (9) show how to obtain 

a proof of a wff which has been found by this method to be valid. 

46.16. (1) By the same method solve also the following case V of the 

decision problem: 

V Well-formed formulas with a prenex normal form in which the matrix 

satisfies the condition of not having the value falsehood for two different 

assignments of truth-values to its elementary parts unless the two assign¬ 

ments differ in the truth-value for at least one elementary part that con¬ 

tains none of the variables occurring in the prefix. 

And illustrate by applying the solution to the following particular examples 

(after dropping universal quantifiers from the beginning of the prefix if 

necessary): 

(2) ^yJfeMz). F(x, y,) _ 

(3) (x)(3y1)(3y2)(2).F(x,2)z 

(4) (a:i)(^2)(3yi)(3y*)(^) - 

F(xv x2. y,) 3 F(yt. yv z) 

F(x2. yx, y2) => F(yv z>z): 

F(yv y2, z) 3 F (x2, x2. y2) 

F(z, x) 3 F(x. x) 3 F(x. x)F(y1, yt) 

[F(ylt z) 3 F(yt, *)] => F(x, x) 3 . 
F(x, x). F(yv y2) 3 F(z, z) 

d [F(xl, XV x2) 3 F(x1. xt. x2)] 3 . 

> [F(xv x2, x2) 3 F(xl. x1, x2)] 3 . 

Fixj, xl, x2) = F[xv x2, x2) 
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46.17. (1) In the same way, extend the method of 46.13(2) to solve case 

IX of the decision problem. And illustrate by applying the solution to the 

following particular examples: 

(2) (a^)(*»)(3^)(3ys)(*a)(**) • F(xv zi) => • 
F{ylt za) => F(ya, zl)F(yi, zx) v F(x2. z2)F(y2, zt) 

(3) (3*i)(3*t)(y) . [F(*„ y) = F(xa. y) = F(zx, za)] v (F(zx.y) = F(za, y)] 

(4) (3x|)(zt)(3x,)(x4). [F(x„ x4) = F(x4, x,) = F(x„ x4) = F(x4, x,)] . 

F(Xj, x4) = F(x4, x,) = F(x„ x4) = F(x4, x,) 

(5) (3xl)(x2)(3x,)(x4) . F(x„ x4) = F(xa, x4) id . 

F(x„ x4) = F(x4, x,) = F(x„ x4) = F(x4> xa) 

46.18. (1) In the same way, extend the method of 46.13(3), (4) to solve 

case VIII of the decision problem.440 Illustrate by applying the decision 

procedure to the following particular examples: 

(2) (x)(3y,)(3y,)(z) . F(x, z) = F(z, x) id . 

F(x. z) = F(ya, z) . F(y„ z) id F(yt, ya) 

(3) (zi)(zi)(3yj)(3y2)(z) . F(Xj, y2, xv z) =5 . 

F(zi* Vv zi> ya) = ^(Vi. X2, yx, y2) id . 

F(xi' z»> y«)13 [F(*i. ya. sr&. ya) => F(*i. ylf z)]. 
F(xv 2, yx, z) z> . F(Xj, yv xl, y2) = F(x1, y2, y„ y2) 

(4) (zi)(z*)(3yi)(3y2)(z) . F(x1, x2) id . F(ylf y2) o F(xa, z) v F(ya, z) z> . 

F(y». y«) => [F(xa, z) = F(y„ z)] id F(z, z) id . 

F(y». ya) • F(yi. ^) = F(ya. z) 

(5) (z)(3y,)(3yt)(3y,)(z). 

F(yi. ya. ys) => [F(X. x, z) r> F(ya, ys. yx) v F(ya, yx, y2)] z> . 

F(ya. yi. ya) ^ F(yx, y2. ya)F(ya, y3, yx) = F(ya, ylt z) id . 

F(ya. ya. yi) => F(yv y2, y3)F(ys, y1( y2) = F(yx, z, ya) id . 

F(y». Vi. ya) => ~F(ya. y3, yx) ZD F(yx, y2, y3) = F(z. ya, yx) id . 

^(yi» Vi. Vs)F(y2. j/s* yi)^(y3. yi. y3) = z, z) 

46.19. Apply the remark of footnote 425 in order to reduce the solution 

of each of the following additional special cases of the decision problem to 
that of cases I, V-IX: 

XI' Well-formed formulas in which every truth-functional constituent is in 

prcnex normal form with an elementary part or the negation of an 
elementary pari as its matrix. 



268 PURE FUNCTIONALCALCULUSOF FIRST ORDER [Chap. IV 

XI Well-formed formulas in which every truth-functional constituent is in 

prenex normal form with a matrix that has at most one elementary part 

containing any of the variables that occur in its prefix. 

XII Well-formed formulas in which the prenex normal forms of the truth- 

functional constituents have prefixes of the following forms only. 

(a,), (a,)(a2), (a1)(3b1)» (a1)(a2)(3b1), (a1)(3b1)(3b2), (a2)(a,)(3bx) 

(3b2). 

XIII Well-formed formulas in which the prenex normal form of each truth- 

functional constituent P (has a prefix of one of the forms (bx) (b2).. .(bB) 

or (a1)(a2) ... (a^HSbJfSbj) ... (3b„) and a matrix in which 

every elementary part other than a propositional variable contains all of 

the variables b1( b2,..bn—where the number n is the same for all the 

constituents P,, and the numbers m( are each of them less than or equal 

to n. 

46.20. Consider the following additional case of the decision problem: 

XIV Well-formed formulas having a prenex normal form with a prefix of the 

form (ajHa,) ... (aj^bj^b,).. . (Sb,,)^)^) .. .(c,) and a ma¬ 

trix in which the complete list of functional variables occurring is 

tv u__ fM. 6i, g2.gtf, such that no elementary part with one 

of the functional variables f, contains any of the variables Cj, c,,..c,, 

and each elementary part with one of the functional variables g( contains 

either none of the variables b1( b2,..bn or at least one of the variables 

Ci» Cj, ..C|. 

(1) By the method described in 46.13, solve the subcase XIV0 in which there 

are no free individual variables and m = 0, showing in this case that K = 1- 

(2) Extend this method to solve case XIV in general. (3) By taking / = 0, 

find a solution of case I as a corollary of the solution of case XIV. (4) Illu¬ 

strate the solution of case XIV by applying it to the following example: 

(*1) ixi) (3t/i) (3y2) (z). F(xl, xt) 3 . G(zv xa) =>. 

G(xa, 2) = G(ya, z) zd [Ftyv ya) zd F(xa, y2)] . 

G(xt, z) = G(yv z) zd F{xl. yJFfa. yjFfa. y,h 

46.21. Consider the general method for the solution of the decision prob 

lem which is outlined in footnotes 439 and 440, and study the question of 

extending it to cases in which a row in the table (or row-pair, etc.) may be 

related to more than one earlier row (row-pair, etc.). Explain why the 

method cannot be extended to an arbitrary such case; and seek for any 

special cases of this sort to which the extension may be possible. Consi er 
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in particular the case Vllj of any wff A having a prenex normal form in 

which there are no free individual variables and the prefix is (3bj)(3b2) (c). 

46.22. The problem traditionally treated under the head of the categorical 

syllogism may be represented as follows in connection with an applied 

functional calculus of first order having singulary functional constants 

among its primitive symbols. Let a sentence be said to express a categorical 

proposition if it has one of the four forms f(x) z>x g(x), f(x) zdx ~g(x), 

(3x) . f(x)g(x), (3x) . f(x) ~g(x), where (in each case) f and g are singulary 

functional constants.441 It is required to find all valid forms of inference in 

which there are two premisses, and the premisses and conclusion each of them 

have one of the four categorical forms. But cases are to be excluded in which 

there is essentially only one premiss, i.e., in which there is a simpler valid 

inference according to which the conclusion in question would follow from 

one of the two premisses alone. 

For example, among the required forms of inference are the following 

which correspond to the traditional syllogisms in Darii, Ferio, and Feriso 

respectively, and which are to be distinguished as all three different: from 

g(x) 3xh(x) and (3x) ,f(x)g(x) to infer (3x) . f(x)h(x); from g(x) z>x ~h(x) 

and (3x) . f(x)g(x) to infer (3x) . f(x) ~h(x); from g(x) =5X ~h(x) and 

(3x) . g(x)f(x) to infer (3x) . f(x) ~h(x). 

Evidently such forms of inference can be tested by writing for each one 

a corresponding leading principle, expressed as a wff of the pure functional 

calculus of first order (compare exercise 15.9). And the form of inference is 

to be considered valid if and only if its leading principle is valid. For example, 

the leading principle of Darii isG(x) z>x H(x) z> . (3x)[F(x)G(x)] =5 (3x) . 

F(x)H[x) \ and it may be verified by the decision procedure for case III, as 

given above, that this leading principle is valid, and that neither of the 

simpler leading principles G(x) =>xH(x) => (3x) . F(x)H(x), (3x)[F(x)G(x)] 
3 (3x) . F(x)H(x) is valid. 

wordl i * r • ^mS ar„e.cal,ed A- E- l- ° respectively and are rendered in 

however !k S- n° f S are G S' some F 8 arc G's- some F's ^ not G’s. Notice. 
: that vers,on here suggested of the traditional doctrine of categorical 

but^theronl categorical syllogism is not put forward as the correct interpretation 
but r^her only as one possible or plausible interpretation. 

different wHfl at thC tradit<‘onal doctrine is not sufficiently definite and coherent-and 
molt fcUhfur? ^ n°Vuff,C;enUy 'n agreement—to make it clear what is the best or 

di«icu?^itLut ■ r.° lta.!°g,StlC S>'Stem For therc is- ‘he one hand, the 
doctrine^would seem^t' JTtf0' ' “ 14 ,S Called <Some “P**13 of the traditional 
tlx) = -S “ J %n*? ,be,^tter represented if A and E were taken as (3x)f(x) . 

in the exerci«?dA 3a /iS* ’resPectiv^y. instead of in the way suggested 

!!wSd not^rather £'°" ^ ^ the <UeStion "**ther theUadftional 

variables instead 4* 6) *S 
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By the method indicated, solve the problem of finding all such valid forms 

of inference (valid categorical syllogisms). 

46.23. Implicit in some of the foregoing exercises (see 46.11(2), 46.13, 

46.15-46.18) is a metatheorem due to Herbrand,442 namely a generalization 

of **441 to the case of a wff A in prenex normal form with an arbitrary 

prefix, the only further difference in the statement of the generalized meta¬ 

theorem being in the substitution by which the quantifier-free wff Bfc is 

obtained from M. State this generalization of **441 explicitly: (1) for the 

case that the prefix is (3b)(c)(3d)(e) and the free individual variables of 

A are a, and a2; (2) for the case of an arbitrary prefix and an arbitrary 

number of free individual variables in A. 

46.24. By means of the metatheorem of 46.23, prove the completeness 

(in the sense of §44) of the following described formulation, F£p, of the pure 

functional calculus of first order, due to Herbrand:442 The primitive sentence 

connectives are negation and disjunction. The primitive quantifiers are the 

universal and existential quantifiers. The axioms are all quantifier-free 

tautologous wffs. And the rules of inference, none requiring more than a 

single premiss, are as follows: the rule of alphabetic change of bound variable 

(*402); the rule of generalization (*401); from A to infer (3b)B, where b 

is an individual variable which does not occur in A, and B is obtained from 

A by replacing zero or more free occurrences of the individual variable a in 

A (not necessarily all free occurrences of a in A) by b; to replace a wf part 

(a) [C v D] by (a)C v D. if a is not free in D; to replace a wf part (3a) (C v D] 

by (3a)C v D, if a is not free in D; to replace a wf part (a) ~C by ~(3a)C; 

to replace a wf part (3a) ~C by ~(a)C; to replace a wf part P v 0 hy 0 v P. 

to replace a wf part Pv[QvR] by (P v 0] v R; to replace a wf part 

[P v 0] v R by P v [O v R]; to replace a wf part P v P by P. 

47. Reductions of the decision problem. A reduction of the decision 

problem (of the pure functional calculus of first order) consists in a 

class r of wffs and an effective procedure by which, when an arbitrary 

A is given, a corresponding wff \r of the class T can be found such that 

is a theorem if and only if Ar is a theorem, and by which, further, a proo 

A can be found if a proof of Ar is known. For example, **420 and 42 c 

stitute a reduction of the decision problem, the class T being in this case e 

class of wffs in Skolem normal form. 

Recherches sur la Thiorie de la Demonstration. War5*" ^^STa paper 
dissertation at the University of Pans. (Added in proof. See in h U.S.A.. 
of Burton Dreben in the Proceeding of the National Academy of Sciences of 

vol. 38 (1952), pp. 1047-1062.) 
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A reduction of the decision problem for validity consists in a special class T 

of wffs and an effective procedure by which, when an arbitrary wff A is 

given, a corresponding wff Ar of the class 71 can be found which is valid if 

and only if A is valid. Similarly, a reduction of the decision problem for 

satisfiability consists in a special class of wffs and an effective procedure by 

which, when an arbitrary wff A is given, a corresponding wff of the special 

class can be found which is satisfiable if and only if A is satisfiable. 

Clearly, every reduction of the decision problem for satisfiability leads to 

a corresponding reduction of the decision problem for validity, and vice 

versa. (The correspondence between **437 and **438 may be taken as an 

illustration of this.) Thus it is necessary to treat only one of the two kinds of 

reduction. Wherever results in the literature are stated as reductions of the 

decision problem for satisfiability, we shall here reproduce them in the other 

form, i.e., we shall state the corresponding reduction of the decision problem 

for validity. 

With the exception of the reduction to Skolem normal form, and reduc¬ 

tions which (like that to prenex normal form) can be regarded as included 

in this or which (like those of 39.5, *465) follow by little more than propo¬ 

sitional calculus, reductions of the decision problem in our present sense, 

i.e., of the decision problem for provability, have rarely received treatment 

in the literature, perhaps only in the work of Herbrand. Since for many pur¬ 

poses the weaker result is sufficient, we shall deal in the remainder of this 

section with reductions of the decision problem for validity; and it will be 

convenient to express such reductions by saying that the class T is a reduc¬ 

tion class. 

In view of the unsolvability of the general decision problem of the pure 

functional calculus of first order (whether for provability or validity), it is 

evident that, if T is a reduction class, then the special case of the decision prob¬ 

lem for wffs of the class T is unsolvable. And this may be regarded as being 

a part of the significance of reductions of the decision problem for validity. 

As a lemma for later proofs, we first establish the following metatheorem, 

the idea of which is due to Herbrand:445 

•*470. Let A be any wff. let p„ p2.p* be the complete list of distinct 

propositional variables occurring in A, and let f2, f2.fN be the 

complete list of distinct functional variables occurring in A. Sup¬ 

pose that f{ is an Arary functional variable (* = 1,2,..., N), and 

_let h ~ 1 be the greatest of the. numbers hv ht.hN. Choose 

“•In the paper cited in footnote 430. 
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distinct individual variables444 xlt x2__ xM+N, yv y2,..yh_v 

of which Xj, x2,..xM+N do not occur in A, and choose an h-ary 

functional variable f.444 Let C,bef(x,, x,.x,) (7 = 1,2,..., M) 

let F, be f((y„ y2.yft<) (* = 1.2.N): let D, be f(xM+i, 

XMH-- XMH’ Yv y2-- y*,) (*' = 1.2.N); and let B be 

S';... S’" S’; S’;... S’* ai ... m... n. 
Then B is valid if and only if A is valid. 

Proof. If h A, then h B by *352. By **440 and **434 it follows that, if A 

is valid, then B is valid. 

By *301 and *306, we may suppose that A contains no free individual 

variables. Taking the positive integers as domain of individuals, assume that 

B is valid, and consider any system of values xv r2, . . ., xM, 0X, 02, • • •> &N 

of the free variables Pj, p,.pM, f2, .. ., of A. Let the values 

1, 2,. . ., M + N be assigned to the free variables xlt x2,. .., *M+N of B 

respectively, and let a value 0 of the free variable f of B be determined as 

follows: 0(;, /, ..., ;) = xi(j = 1,2,..., M)\ 0(M+», M+», ..M+i, 

«1» u2.unt) = &i(uv u2.“0 (* = l> 2-- N)> ®(ui’ ut.u*)= 1 
in all other cases. The value of B for this system of values of its free variables 

is evidently the same as the value of A for the system of values rv xt. 

xM, 0,, 02, .... <f>N of the free variables of A. And since the value of B is t, 

it follows that the value of A is t. 

Thus we have shown that, if B is valid in the domain of positive integers, 

then A is valid in the domain of positive integers. Hence by **450, if B is 

valid, then A is valid. 

It follows that the class of wffs containing only one functional variable, 

and no propositional variables, is a reduction class. However, we go on at 

once to obtain stronger reductions than this. 

According to a result of Lowenheim, the class of wffs containing only bi¬ 

nary functional variables is a reduction class. Bv a refinement of Lowen- 

heim’s method it is possible to obtain the result that the class of wffs con¬ 

taining only a single binary functional variable (no other functional vari¬ 

ables, and no propositional variables) is a reduction class.445 We proceed to 

show how this may be done. 

Given an arbitrary wff A, we first reduce it by **470 to a wff B which con 

„:“.r £ £££ rara 
according to the alphabetic order oPthe , 4 (I936)i pp. 137-144. 

“•First proved by Kalmir in Composite Mathematxco. vol. 4 iiwao;. yy 
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tains only a single A-ary functional variable f. If A ^ 2, we choose a binary 

functional variable g, and 2A + 1 distinct individual variables Cj, c2, . . c„, 

dlf d2,..dA+1, of which d1( d2, .. .. dA+1 do not occur in B.444 And we let 

G be the conjunction 

g(dt, d2)g(d2, d,).. . g(dA, dA+1)g(dA+1, d,)g(d1( cjgfdj, c2) . .. 

6(dv cA) -^g(dj. d,) -g(c1( d2) ~g(c2, ds) . . . ~g(cA, dA+1)g(dA+„c1). 

Then letting C be 

£*(c,. c,.ck) 

^Odjuad,)... Od 
K4 1 

we show that C is valid if and only if B is valid, therefore if and only if A 

is valid. 

If b B, then b C by *352. By **440 and **434 it follows that, if B is valid, 

then C is valid. 

By *301 and *306 we may consider, instead of B and C, their universal 

closures B' and C'. Taking the natural numbers as domain of individuals, 

assume that C' is valid, and consider an arbitrary value 0 of the single free 

variable f of B'. Then let a value P of the single free variable g of C' be 

determined as follows. 

The (ordered) A-tuples of natural numbers are enumerated in such a way 

that the natural numbers occurring in the Ath A-tuple are all less than A. 

(Analogously to the enumeration used in §44, this may be done by arranging 

the A-tuples (vv vt, .. ., vA> in order of increasing sums r, + d, + .,. -f d,, 

A-tuples having the same sum being arranged among themselves in lexico¬ 

graphic order.) Then V/(u, u) — t except when u = k[h -{-1)4-1 (i.e., 

except when u is congruent to 1 mod h -f- 1). If there is a natural number k 

such that = k(h -\- 1) 4- 1, ut = k(h 4-1) 4- 2.uA+1 = (k + l)(A-fl), 

then ¥*(«,. ut) = W(ut, «,) = ... = ^ uM) = V (uh+1, u,) = t. If 

<*>1. V*-- vA> is the (k 4- l)th A-tuple and u, = k(h 4- 1) -f / (/ = 1. 2. 

•••.A 4-1), then *P(ultvx) = ^(uj, v2) = ... = IP(«*. vh) = t. and 

^(“a+i. vx) = 0(vv v2, . . vA). And in all remaining cases lP(u, v) = f. 

In view of the special properties of the propositional function XP, the 

value of C' for the value 'P of g is the same as the value of B' for the value 

0 of f. And since the value of C' is t, it follows that the value of B' is t. 

Thus we have shown that, if C' is valid in the domain of natural numbers, 

then B' is valid in that domain. It follows that, if C is valid, then B is valid. 

This completes the proof, since C contains only the single binary func¬ 

tional variable g, and we have shown altogether that C is valid if and only 
if A is valid. 
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Notice that in place of (3d,) (3d,) . . . (3d„+1)G in the foregoing proof 

we might equally well have used (d1)(d2) .. .(dA+1)H, where H is 

6(di> ^2) ^ ■ 6(^2- d3) 3 .... g(dA, dA+1) 3 ■ g(dA+1, ^1) 3 ■ 
q) 3 • g(d2, c2) o ■... g(dA, ch) id m —gfd,, dj) 3 ■ 

-6 (Ci, d2) 3 . ~g(q, d3) 3-~g(cA, dA+1) 3 g(dA+1, q). 

For both of the wffs (3d,)(3d2) ... (3dA+1)G and (d1)(d2) ... (dA+1)H 

alike have the value 0(vv v2, .. vh) for the system of values W, vv v2,..., 

vh of their free variables g, q, c2, . ... ch (where P is the propositional func¬ 

tion which was introduced above). By taking advantage of this observation, 

we now go on to establish the following still stronger reduction of the deci¬ 

sion problem for validity: 

**471. The class of wffs in Skolem normal form which contain only a single 

binary functional variable (no other functional variables, and no 

propositional variables) is a reduction class. 

Proof. By **437 we may suppose that the given wff A is already in Skolem 

normal form. 

We consider first the case that A contains only a single A-ary functional 

variable f, making use in this case of the wffs G and H that were introduced 

above. Therefore let A be 

(3a,)(3a2)... (3am)(b1)(b2)... (bJM, 

and let the distinct elementary parts of the matrix M of A be E,, E2,..E^, 

where E, is f(cft, q2.cih) (i = 1,2./i). Since the P-constituents 

of M are the same as its elementary parts, we have by *465 that a certain 

equivalence M = M, is valid, where Mi has the form of a conjunction 

[Ej 3 . Ej 3 .. . . E^_j 3 ~E^][Ej 3 . E2 3 . .. . E*_j 3 ~E*]... 

[E; =>. E5 3 ... -E^ 3 -EJ. 

each E* being either E,- or ~E( (i = 1, 2,..., fi, and 7= 1, 2. • • •> *0* 

Therefore A is valid if and only if Ax is valid, where Aj is 

(3a,)(3a2)... (3am) (b2)(b2)... (b„)M,. 

Choose distinct individual variables q, q-- q, dlt d2.dM, of 

which d„ d2, .. .. dA+1 do not occur in A,,444 let M2 be obtained from Mx 

by replacing each part E* by 

.c*> f>i 
‘5(d1)(dJ)...(dJM.1)H ^<1 

and let A2 be 
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Then Aa is 

(3a,)(3aa) ... (3aJ(b,)(bt) ... (bn)Ma. 

^(Cj.c,.Ck) 

‘■><dI>(da)...(d||M)H 

and by *352, **440, and **434 it follows that if A, is valid, then A2 is valid. 

Let M3 be obtained from by replacing each part Ej by 

f T?i\ 
3[36x)i3dt)...i*dM)G ^<1 

or 
6^(ci'C|.c*) 

according as E* is E, or ~E,, and let A3 be 

(3a1)(3a2)...(3aJ(b1)(b2)...(bJM3. 

Let A4 be 

(3di)(3da) ... (3d*+1)G =>CiCr..s(d1)(da)... (d*+1)H z> As. 

By the same argument that was used above (employing again the domain 

of natural numbers and the same binary propositional function P) we may 

show that, if A4 is valid, then At is valid. 

Letting K be the conjunction of all the wffs 

<3d‘X3d»> ■ ■ ■ (3d»..>G=> • ■ ■ <d««)H|. 

we have by P that b Ma 3 . K r> M3. Hence by *306 and P, 

I- M* => ■ (3d,)(3d2)... (3dA+1)G (d1)(d2) ... (d*+1)H 3 M3. 

Hence by *301, *333, *335, *365, *382, and P, b Aa 3 A4. By modus ponens, 

and since we know that the valid wffs are the same as the theorems (by 

**440 and **434), it follows that, if A2 is valid, then A4 is valid. Consequent¬ 

ly, if Aj is valid, then A4 is valid. 

Then the prenex normal form of A4 is in Skolem normal form, contains 

only the single binary functional variable g, and is valid if and only if A 
is valid. 

This completes the proof of the case that A contains only one functional 

variable. Turning now to the general case, we suppose that A is in Skolem 
normal form 

(3a1)(3a2)...(3am)(b1)(bJ)...(bn)M. 

M being the matrix, and contains M different propositional variables 

Pi. Pi. • • •. PM and N different functional variables f2, f2, .. ., fN. Let f, be 

an Vary functional variable (i = 1. 2.N), and let h be the greatest 
of the numbers Aj. ht.hN. 
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In place of the two wffs G and H which were used in the first part of the 

proof, we now use 2(M + N) wffs G„ G,.GM+N, H„ H,. 

Namely, where g is a binary functional variable and c,, c,.ch, d,, d„ 

• • •• dh+M*N distinct individual variables of which d„ d„ . .d4+Jr4W 

do not occur in A,44* we take Ga to be the conjunction 

d,)g(d,. d,).. g(d4+4f+.w_lf d4+M+A/)g(dk+u+N, d,) 

fc(di. qjgfd,, c,)... g(d4, c») ~g(d„ d,) ~g(c,, d,) 

~g(c*. ds)... ~g(cv dA+I)g(d^a. c,) 

(a = 1, 2, .... M + A'), and we take Ha to be 

ft(dj, d,) 3 . g(dj, ds) 3 •.. . -f 3 '£(dJi+u+N' dl) 3 * 
gfdj, C,) 3 . g(dj, C,) 3 . . . . g(dv Ck) 3 . ~g(dj. d,) 3 . d,) 3 • 

~g(c„ d,) 3 .... ~g(c4, d4+1) 3 g(d4+a, Cj) 

(a = 1,2.M -f A’). 

The same use is made as before of the natural numbers as domain of 

individuals. And given a system of values t,. t,.xu, •••.#* 

of the propositional and functional variables p,, p,,..., pM, tv tt,..., I*, 

the propositional function V, used as a value of the variable g, is now deter¬ 

mined as follows. The same enumeration is used of the ordered A-tuples of 

natural numbers, ^(u, u) = t except when u = k(h + M + N) + 1 (i c., 

except when u is congruent to 1 modulo h -f M +N). If there is a natural 

number k such that u, = k(h + M -f N) -f- 1, w, = k(h -f M + N) + 2, 

• • - uk+u+N =(k + l)(h + M + N). then ^(u,. «,) = W(uv «,) = ...= 

^(“a+M+N-I • UA+M+n) = ^,(UA*U+N ’ “l) = ^ (Vl’ V*’ ’ • •’ Vk) 

(k -f- l)th A-tuple of natural numbers and m, = k(h -f M + N) + 

(/ = 1,2.h -f- M 4- N), then ^(k,. v,) = vt) = ... = v>) 

= t. and !P(u. vt) = r, (j = 1. 2.M), and . ®i) = 

vv .... vkf) (i'=l,2.N). And in all remaining cases W(u. v) = f. 

In place of the substitutions 

^(3dt)(3dt).~(adM.1)0 and 3(di)(«*)~«a+i)H 

which were used in the first part of the proof, we now use the substitutions 

«-,(3d1)(3d,)...<3<l*+|/+x)G/' 

3(3d1)(3d2)...{3d4+J/+w)Oi,+< * 

^(«lj)(d1)_,{dA+i/+>f)H/ * 

., N. where j = 1, 2.A/, and * — 1, 2, . . 
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With these indications, we leave it to the reader to supply the remainder 

of the proof, following the same plan used in the first part of the proof. 

By similar methods, involving the use of an enumerably infinite domain 

of individuals (such as the positive integers or the natural numbers) and of 

an enumeration of the ordered pairs or of the ordered A-tuples of individuals, 

many other reductions of the decision problem for validity can be obtained. 

We shall indicate briefly the proof of one more such result, and then con¬ 

clude this section by stating without proof some of the other results which 

can be found in the literature. 

**472. The class of wffs which are in Skolem normal form with just three 

existential quantifiers in the prefix and which contain just four 

binary functional variables (no other functional variables, and no 

propositional variables) is a reduction class. 

Proof. By **471 we may suppose that the given wff A is in Skolem normal 

f0rm (3a,)(3a2)... (3am)(b,)(ba) . .. (bn)M, 

M being the matrix, and contains only a single binary functional variable g. 

We may suppose also that m > 3, the required reduction being obvious in 

the contrary case. Let glt g2, g3 be binary functional variables which are 

distinct from one another and from g, let xv x„ . . ., x^.j, y, z, ct, c2, c, 

be distinct individual variables which do not occur in A, and let B be: 

(xi)(y)(z) (3cj)(3c2)(3c,)[gt(x„ cJgjfXj. cjg^cj, y)ga(c3. z) . 

&(xi. yteita, z) => g3(y, z) . ga(Xj, y)g2(x„ z) zd g3(y, z) . g3(y. z) zd . 

gi(y, xj = ga(z, Xj) . g2(y, xj = g2(z, xt) . g(y, x,) = g(z, x2) . 

g(x1( y) = g(Xl. z)] zd 

(3xj)(x2)(x3) ... (xm_1)(a1)(a2) ... (arn)(b1)(b2) ... (bn) . gx(Xl. a,) zd . 

6j(*i. x2) ^ • 6i(x2, a2) zd . g2(x2, x3)zd•... g^x^.j, am_t) Z5 . 

^(Xib-j, a,,,) id M 

By *381, B can be reduced to an equivalent wff C in which the quantifiers 

(xa) and (3xa) have been deleted from the antecedent and the consequent 

of B respectively and have been replaced by an initially placed quantifier 

(3x,). The prenex normal form of C then satisfies the required conditions, 

that it is in Skolem normal form with just three existential quantifiers in 

the prefix and contains just four binary functional variables ga, g2, g3, g. 

We have at once that the prenex normal form of C is valid if and only if 

B is valid. That B is valid if and only if A is valid we leave to the reader to 

prove, with the aid of the following remark. 
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Take the natural numbers as domain of individuals, and choose any 

enumeration of the ordered pairs of natural numbers. Given an arbitrary 

value *P of g, a system of values Wx. Wt, ^ of g,, g2, g3, may be determined 

as follows so as to give to the antecedent of B the value t: Wx(u, v) = t if 

and only if v is the first number in the (u -f- l)th ordered pair; xPt(u, v) — t 

if and only if v is the second number in the (u -f 1 )th ordered pair; xPi(u,v) = 

t if and only if u = v. For this particular system of values of g1( g2, g3 it is 

clear that the consequent of B has the value t if and only if A has the value 

t. It is true that, for a given value of g, other systems of values of glt gt, g3 

may in general be found so as to give to the antecedent of B the value t; 

but (as may be read from the antecedent of B itself) these other systems 

of values of g,, g,, g3 must always have certain properties in common with 

the system XP1, xPi, ¥3 which are sufficient to ensure that the consequent 

of B has the value t if and only if A has the value t. 

As will be indicated in exercises below, the reduction process of **472 may 

readily be modified so as to obtain only three binary functional variables 

in the wffs of the reduction class instead of four, or, alternatively, so as to 

obtain one binary and one ternary functional variable (the other conditions 

remaining in either case unchanged). By more elaborate methods of the same 

kind it is even possible to reduce this to a single binary' functional variable. 

According to known results, including that just mentioned, each of the 

following classes of wffs is a reduction class (where it shall be understood in 

each case, without separate mention, that the wffs are to contain no free indi¬ 

vidual variables and no propositional variables, and that either the wff itself 

or its indicated antecedent and consequent are to be in prenex normal form). 

Wffs with prefix (3a,)(3at)(3a3)(b,)(bt) .. . (bj which contain a single 

. (3dn) which contain a single 
binary functional variable.44* 

Wffs with prefix (a)(3b)(c)(3d,)(3d,) . 

binary functional variable.447 

“•The reduction to wffs of this prefix containing none but binary functional 

is due to Gbdel in Monatshefte fur Mathematik und Physik. vol. 40 (1933) PP- 
(another proof by Skolem in Acta Scientiarum Mathematicarum. vol. 7 (1®»).■ PP- 

193-199). The further reduction to a single binary functional variable'is'due to 

Kalmir and Jinos Surinyi in The Journal o/ Symbolic Logic, vol 12 (1947), PP- 

The proof of "472 which is given in outline above is by Gbdel s . . . 

••’The reduction to wffs of this prefix is due to Ackermann in the P*P« 

notes 430. 435. and the further reduction to a single binary functional van*“ . by 

Kalmir in Tk Journal o, Syntol.c Logic, vol. 4 (1939). 
Ackermann can be stated in the somewhat stronger form that the class of wf 

fonn (3a)(a,)(a,)... (a.)M = (3b)(c)f(b. c), 

where M is quantifier-free and contains no individual variaMes other 

.... a. and f is a binary functional variable occurring in M, is a 
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Wffs with prefix (3b1)(3b2)(c)(3d1)(3d2) . . . (3dn) which contain a 

single binary functional variable.448 

Wffs with prefix (3a,)(3a2) . . . (3an)(b) which contain a single binary 

functional variable.449 

Wffs of the form (a)(b)(c)Mx id (3a)(3b)(c)M2, where and M2 are 

quantifier-free and contain none but binary functional variables.450 

Hence also wffs with prefix (3a)(3b)(3c)(d) which contain none but 

binary functional variables.450 

And also wffs with prefix (3a) (3b) (c) (3d) which contain none but binary 

functional variables.450 

“•The reduction to wffs of this prefix is due to J6zef Pepis in Fundamcnta Mathe- 

maticae, vol. 30 (1938), pp. 257-348. More fully, Pepis’s result in this paper is that the 
class of wffs of the form 

(a,)(»,) . .. (a„)M =5 (3b1)(3bi)(c)f(bI. b„ c), 

where M is quantifier-free, and contains no individual variables other than a,, a,, 
.... a., and contains besides the ternary functional variable f only one singulary 
functional variable, is a reduction class. Or f(b„ b„ c) may be replaced by the dis¬ 
junction fi(bj, c) v f|(ba, c), in which case M contains the two binary functional 
variables f, and f, and one singulary functional variable. The reduction to the prefix 
P‘>,)(3b,)(c)(3d,)(3d1) . . . (3d,) and a single binary functional variable is due to 

Su.rinyi in The Journai °l Symbolic Logic, vol. 15 (1950), pp. 161-173. 
The reduction to wffs of this prefix is again due to Pepis, being a corollary of the 

fuller result quoted in the preceding footnote. The further reduction to a single binary 
functional variable is due to Sunknyi in Malematikai is Fizikai Lapok. vol. 60 (1943), 

footnote) SCe a,S° ^ paper °* KaJmAr and Surinyi which is cited in the preceding 

The same paper of Pepis contains also a number of other results, in the direction 
of reduang the number of functional variables required in connection with various 

Pk * °_"hese have s,nce been superseded by stronger results, but the following 
M ^orth quoting: m the Ackermann normal form as given in footnote 447, 

lar^and on? t «« binary functional variable f. only one singu- 

or eise on,y one Sm8U'“y a"d tWO b,n^ 

mSSMTIJoo/TtI!? dUC t0 5UrAnyi 'n thC paper Cited ,n thc Prccedin§ footnote. 
A. prot>/ ) Th« reductions are also obtained by SurAnyi in a paper in 
Another naner^h* ^cademiae Scientiarum Hungancae, vol. 1 (1950), pp. 26U271. 

the lfst oPf redaction 5amef periodical, vol. 2 (1951). pp. 325-335. adds to 
. reduction classes the two following: wffs with prefix (a)(3b)(c)(3dH3el 

«v,c„h b^n(r„«i„but,,mgult7and bin^ SI, 
wven binary functional variables; and wffs with prefix (3a)(b)(c)(3d)(3e) which 

fZ«bUt,S,ngUl^y and binary ^tional variables, induing at most 

aad vol 2 U8°6 ,Vapnpa VO' 1 <1950)- PP- M-23. 
prefix (3a.)(3a Wb Wb l fh ini foUowm8 reduction classes: wffs with 
wffs with prefix 3 a) (b Hb i b" h,?wl C°ntain4 sin8le binary functional variable; 
variable; Lid w fs with prefix co“tain asin8le binary functional 
contain a "*** 
satisfiability to that concerns™ A reductlon of the decision problem for 

of the decision problem f™ validity'to* f,n,tedomain- and he°ce a reduction 

domain, is contained in anothe^patir of K^nSr “vi"8 S*i'si,ab,1,ty ,n s*™ finite 
(the unsolvability of the dLuLn n^hl^ , d '.V01- 2 (196I)' PP- 12&~141 
trad already been proved by Trachtenbrot Vahd,‘y. ,n every finite domain 

F oy iracntenbrot in the paper cited in footnote 567). 
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EXERCISES 47 

47*°* Extend the result of **470 to obtain a reduction of the decision 

problem for provability, by showing how to find a proof of A if a proof of 

B is known. 

47.I. Supply in detail the last part of the proof of **471, which was 

omitted in the text. 

47*2. For the proof of **472, supply in detail the omitted demonstration 

that B is valid if and only if A is valid. 

47-3. Show that, in **472, the number of binary functional variables may 

be reduced from four to three by introducing a binary functional variable h, 

replacing g2(d, e) everywhere by h(d, e) ~h(e, d), and g3(d, e) everywhere 

by h(d, e)h(e, d). 

47.4. Show that, in **472, the reduction process may be modified so as 

to obtain one binary and one ternary functional variable, replacing g,(d, e) 

everywhere by h(d, e, e), g2(d, e) by h(d, e, d), andg3(d, e) by ~h(d, d, e) 

47.5. The leading idea of the reduction process of **472 is to make use of 

an enumeration of the ordered pairs of natural numbers in order to replace a 

sequence of existential quantifiers (3aj)(3a2) . .. (3a,,) by a single exis¬ 

tential quantifier (3xj), at the expense of increasing the number of univer¬ 

sal quantifiers. With appropriate modifications, the same idea may be used 

to replace a sequence of universal quantifiers by a single universal quantifi¬ 

er, at the expense of increasing the number of existential quantifiers. For 

example, (b1)(b2)M might be replaced by (x1)(3b1)(3bt) . g1(x1, bj) 

ga(x„ b2)M, which will have the same value as (b1)(b2)M if g, and g2 have 

the values xPl and xPt that are given in the proof of **472. Investigate the 

question what additional reductions of the decision problem for validity can 

be obtained (beyond those of **470-**472) by using this method, together 

with the methods and results of **420-**421, **470-**472. 

48. Functional calculus of first order with equality. The functional 

calculus of first order with equality is a logistic system obtained from the 

functional calculus of first order by adding a binary functional constant I 

and certain axioms (or postulates, according to the point of view) that con¬ 

tain I. Or, alternatively, it may be described as obtained by adjoining 

additional axioms to an applied functional calculus of first order among 

whose primitive symbols is the binary functional constant I. The wffs of the 

system are the same as the wffs of this applied functional calculus of first 

order, but of course there are additional theorems in consequence of the 

added axioms. 
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We shall speak of the pure functional calculus of first order with equality if 

the primitive symbols include all propositional and functional variables (as 

listed in §30) and no functional constants except /; an applied functional 

calculus of first order with equality if there are other functional constants in 

addition to / ; a simple applied functional calculus of first order with equality 

if there are other functional constants in addition to I and no functional 

variables. Besides these there is the simple calculus of equality, obtained by 

adding appropriate axioms to the simple applied functional calculus of first 

order which has / as its only functional constant. 

If the formulation of §30 is used for the functional calculus of first order, 

the axioms to be added are the single axiom 

I (x, x) 

and the infinite list of axioms given by the axiom schema 

/(a, b) d , A 3 B, 

where a is an individual variable or an individual constant, b is an individual 

variable or an individual constant, and B is obtained from A by replacing 

one particular occurrence of a by b, this particular occurrence of a being 

within the scope neither of a quantifier (a) nor of a quantifier (b). The for¬ 

mulation of the functional calculus of first order with equality that is ob¬ 

tained by adding the functional constant I and the foregoing axioms to F1 

we shall call F7. And in particular the formulation F/p of the pure functional 

calculus of first order with equality is obtained by adding the functional 

constant I and these axioms to F*p. 

For the simple calculus of equality we may begin with the formulation F1 

of a simple applied functional calculus of first order having I as its only 

functional constant. To this we may add the axiom /(x, x) and all the axioms 

given by the above axiom schema, so obtaining the formulation £ of the 

simple calculus of equality. It is sufficient, however, to add only the three 
following axioms: 

I(x>x) (Reflexive law of equality.) 

I{x> V) => I(y, x) (Commutative law of equality.) 

J(x, y) ^5 • I(y, z) ^ I(x, z) (Transitive law of equality.) 

And the formulation of the simple calculus of equality that is obtained in 
this way we call E. 

For the pure functional calculus of first order we may use also the formu¬ 

lation F,p of §40. By adding to this the functional constant I and two axioms 



282 PURE FUNCTIONAL CALCULUS OF FIRST ORDER [Chap. IV 

I (x. x) 

I(x, y) z> .F(x) zd F(y), 

we obtain a formulation of the pure functional of first order with equality 

which we shall call FjP. 

In all of these calculi the notations = and *, more familiar than I, may 

be introduced by definition as follows: 

D18. [a = b] -*/(a,b) 

D19. [a * b] -►.-/(a, b) 

And of course all the definitions and methods of abbreviation of wffs con¬ 

tinue in force which were introduced for the functional calculus of first 

order in §30. 

For the principal interpretation of all of these systems it is intended that I 
shall denote the relation of equality, or identity, between individuals. 

For example, in the case of the pure functional calculus of first order with 
equality, after choosing some non-empty class as the individuals, we fix the 

principal interpretation by the same semantical rules a-f as given in §30 (for 
the pure functional calculus of first order), together with two additional rules as 

follows: 

g,. If a is an individual variable, the value of /(a, a) is t for all values of a. 
gt. If a and b are distinct individual variables, the value of /(a, b) is t if 

the value of a is the same as the value of b, and the value of I (a, b) is f if the 

values of a and b are different. 

The syntactical definitions of validity and satisfiability (§43), as well as 

the metatheorem that every theorem is valid (**434), can be extended in 

obvious fashion to the pure functional calculus of first order with equality, 

and, especially in some of the exercises following, we shall assume that this 

has been done. 

EXERCISES 48 

48.0. In the formulation E of the simple calculus of equality, the commu¬ 

tative and transitive laws of equality may be replaced by Euclid’s axiom 

that “things equal to the same thing are also equal to each other,” expressed 

as follows in the notation of the system: 

I(x, z)I (y, z)zzl{x, y) 

Thus is obtained a formulation £ of the simple calculus of equality which 

has only two added axioms instead of three. Show that E and are equiva 

lent in the sense that their theorems are the same. 
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48.1. For each of the systems E and £ show that the added axioms, con¬ 

taining I, are independent. 

48.2. Show that the two formulations £ and E of the simple calculus of 

equality are equivalent in the sense that their theorems are the same. (Com¬ 

pare the proof of *340, which may here be paralleled in certain respects.) 

48.3. Show that the two formulations F/p and FjP of the pure functional 

calculus of first order with equality are equivalent in the sense that their 

theorems are the same. (The same method may be used by which the equiv¬ 

alence of F,p and Fjp was proved. But notice, in particular, that the added 

axioms here introduce some new questions in connection with the rules of 

substitution.) 

48.4. For a formulation of a simple applied functional calculus of first 

order with equality, if the number of functional constants is finite, show that 

a finite number of added axioms is sufficient, as follows: the reflexive, 

commutative, and transitive laws of equality; for each singulary functional 

constant f an axiom, 

I(x,y) zd . t(x) zd f(y); 

for each binary functional constant f other than /, two axioms, 

I(x, y) zd . f(x, z) z> f(y, z), 

I(x, y) zd m f(z, x) zd f (z,y); 

for each ternary functional constant, three analogous axioms; and so on until 

axioms of this kind have been introduced for ail the functional constants. 

(Again, compare the method of proof of *340.) 

48.5. By using an idea similar to that of the preceding exercise, but 

applied to functional variables rather than functional constants, show how. 

for any wff A of F/p, to find a corresponding wff A' of Flp which is valid if 

and only if A is valid and which is a theorem of Flp if and only if A is a theo¬ 

rem of F/p. Hence extend the Godel completeness theorem. **440, to the pure 

functional calculus of first order with equality. 

48.6. Use the same method to prove the following extension of **450 

to the pure functional calculus of first order with equality: if a wff of F/p is 

valid in every non-empty finite domain and is also valid in an enumerably 

infinite domain, then it is valid in every non-empty domain. 

48.7. Find and prove similar extensions of **453 and **455 to the pure 
functional calculus of first order with equality. 

48.8. Prove the consistency of F7 by making use of the afp of a wff as in 
§32. 
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48.9. Extend the metatheorem **323 to F7. 

48.10. Extend the metatheorem **325 to F7 

48.11. Extend the principles of duality *372—*374 to F7. (Wffs of F7 

are to be rewritten by means of D18 and D19 in such a way that the symbol 

I no longer appears explicitly. Then in dualizing, the notations = and 4 

are to be interchanged, as well as ZD and disjunction and conjunction, 

= and cz and v and |, V and 3.) 

48.12. By using the reduction found in 48.5, solve the decision problem 

for the case of wffs of F/p which have a prenex normal form such that, in the 

prefix, no existential quantifier precedes any universal quantifier. (Notice 

that this includes, in particular, the case of quantifier-free formulas of F7p.) 

48-i3- Solve the decision problem for quantifier-free formulas of F7p 

directly, by a method as closely similar as possible to the truth-table decision 

procedure by which it is determined whether a quantifier-free formula of 

Flp is tautologous. Hence restate the solution of the decision problem for the 

special case of 48.12, in a form as similar as possible to that of *460-**463. 

48.14. Solve the decision problem for the singulary functional calculus of 

first order with equality, i.e., for the class of wffs of F/p in which all the 

functional variables occurring are singulary. 

Suggestion: Following Behmann, we may add the following reduction 

steps to the reduction steps (a)-(g) of exercise 39.6: (a) to replace a wf part 

(a) [a = b] by (a)(c)[a = c], if a and b are distinct individual variables and 

c is the first individual variable in alphabetic order other than a and b; 

((}) to replace a wf part (a) [a 4 b] by (a)[a 4 a], if a and b are distinct 

individual variables; (y) to replace a wf part (a)[a 4b1D.a4b1D.-.- 

a 4 bn d a = b] by the conjunction A„[b, = b2 id An_,][bi = b3 id An_x] 

• • • [bn ~ bi An_j][bj = b2 3 • bj = b3 3 An_2][bj = b2 d . bx - b4 d 

A„_2] ... [bn_2 = bD. bn_x = b„ => An_2][bn_j = bniD . bn_x = bu 

A„_2].[b2 = b2=> . bj = b3 id .... bx = b id A®], if a, b2, b2. 

bn, b are distinct individual variables, clt Cj, . .., cn, c are the first n + 1 

individual variables in alphabetic order distinct from each other and from 

a, bI( b2, ..., b„, b, and A, is 

(a) (q) (c2) .. . (c,) 'c),a4c,i.a4c2D....a4cp.c14c23. 

q 4 c, d .... Cj 4 c( d . c, 4 c id • c2 4 CsD.c< 4 c z> a = C 

(i = 0, 1, 2.n); (<5) to replace a wf part (a) [a = a id 

(e) to replace a wf part (a) [a = b id A] by 

A] by (a)A; 
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if a and b are distinct individual variables and A is quantifier-free; (£) to 

replace a wf part (a)[a 4= a zd A] by (a)[a = a]; (rj) to replace awfpart 

(a)[a 4= bx zd . a 4= b2 zd .. . . a 4= b„ zd A] by the conjunction An[B1 

An_j][B, 13 A„_j] .. . [B„ zd An_x] [bx = b2 zd An_x] [bx = b3 zd A„_x] . . . 

[bn_i = bnD A,.,][Bj zd . B2 zd An_2][B! id. B3 zd A„_2] . . . [Bn_x zd ■ B„ 

^ An-j] [^i = b2 zd . B3 zd An_2] [bj — b2 zd . B4 z> An_2] . .. (bn_x = b„D. 

Bn-a ^ ^n-i] = b2 zd . bx = b3 zd An_2] [bj = b2 ^ . bx = b4 zd An_2] . .. 

[^n-s= zd • bn_2 = bn_j zd An_2] [bn_a = b„_j zd . b„_2 = bn zd An_2] . .. 

... [Bx zd . B2 zd .... Bn zd A0], if a, bx, b2.bn are distinct individual 

variables and Cj, c2,. .cn are the first n individual variables in alphabetic 

order distinct from each other and from a, bx, b2, . . bn, and if, further, 

A is quantifier-free and contains no individual variables except a, and B, 

and Cj are respectively 

A| and S* A| 

(* = 1,2,..., n), and A< is 

(®)(ci)(c2) • • • (c<) ia4c1Dia4c2Di.,.a4c(Di 

cl 4= c2 3 , Cj 4 Cj 3 , . . . C,_| 4= Cj D . ~Cj zd ■ '~C2 d .... ~C( zd A 

(» = 0, 1, 2,.. ., n) (thus in particular A<, is (a)A). 

Solve the decision problem for wffs A of F/p such that in each 

elementary part not containing I at most one variable has occurrences at 

which it is a bound variable of A. 

48.16. (1) Extend the method of 46.8 to solve the decision problem for 

wffs of F/p having a prenex normal form (3b)(c)M in which M is the 

matrix and contains no individual variables except b and c. And illustrate 

by applying the solution to the following particular examples: 

(2) (3*)(y) . F(x) ZD [F(y) z> x = y] z> . F(x) = G(y) zd . F(y) = G(x) 

(3) (3x)(y) . [F(x) = G{x)] v [F(y) = G(y) = x = y] 

4®* *7* (^) Extend the method of 46.11(2) to solve the decision problem 

for wffs of F/p having a prenex normal form (a)(3b)(c)M in which M is the 

matrix and contains no individual variables except a, b, c. And illustrate 

by applying the solution to the following particular examples: 

(2) (*)(3y)(z). F[x, x) zd . F(x, z)=>x = yvy = z 3. 

F(x, z) = F(x, y) = F(y, y) zd . F(y, y) = F(z. z) 

(3) (*)(3y)(z) . F(x) z> . G(x) zd . F(y) zd [G(y) zd 

x 4= z =d . G(y) = F(z) z> . F(y) = G(z) 
x = y] 
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(4) (*) (3y) (z) . x =# 2 v y 4 2 

48.18. Apply the decision procedure of 48.14 to (2) the example 48.16(2). 

and (3) the example 48.17(3). 

48.19. (1) Solve the decision problem for wffs of F/p having a prenex 

normal form (aj)(a2)(3b)(c)M in which M is the matrix and contains no 

individual variables except alf a2> b, c. Illustrate by applying the decision 

procedure to show that the following wffs are theorems of F/p: 

(2) (*1) (*t) (3y) (*) • F(xl, xt) => • z) = P(y. y) . 

*1 4 z v x2 4 z 3 [F(xv z) 3 F(xv y)] 3 . 

^(*1. y) v F(x1.z) 3 F(xt, x2) 

(3) (xi)(x2)(3y)(z) . F(Xj) 3 . F(xa) 3 ,G(x1) 3 .G(xt) 3 . 

x, * y3 [F(:)3C(:)] => .#(*,) 3 H(xt) 3 [G(y) 3 F(y)] 3 . 

G(y) = F(z) 3 . F(y) = G[z) 

48.20. Apply the decision procedure of 48.15 to the example 48.19(2). 

48.21. (1) State and solve a special case of the decision problem of F/p 

which is analogous to case V' of the decision problem of F*p. (Cf. 46.15.) 

(2) Illustrate by applying the solution to the following particular example: 

(3x)(3y)(z) . ~F(z. x) v F(x, z) v F(y, z) 

v [x = z = . F(x, x) = F(z, z)] v . y = z = . F(y, y) = F(z, z) 

48.22. Prove the following metatheorem: Let T be a (finite or infinite) 

class of wffs of F/p. Let the complete list of free individual variables occur¬ 

ring in wffs of r be a,. a2, a3,-Let the complete list of propositional 

variables occurring be pj, p2, p3, ..and let the complete list of functional 

variables occurring be iv f2, f3, ... (of course any or all of these lists may be 

infinite), and suppose that f, is an Arary functional variable (i = 1, 2, 3,.. •)• 

Suppose further that T is simultaneously satisfied in the domain of positive 

integers by the system of values vx, v2, v3,..., t1p t2, t3, ..^1, ^2- • • • 

of the variables alf a2, a3, ..., plf p2. P3- • • •» U- *2. Then in the 

domain of rational integers (i.e., positive integers, negative integers, and 0) 

there exist propositional functions V'l, ^2, .such that is an A,-aiy 

propositional function of rational integers (i = 1, 2, 3,...), and for arbi 

trary positive integers uv u2. .. . uh( the truth-value **2,.. *<*,) 1S 

the same as 0((«lt u2.uht), and T is simultaneously satisfied in the 

domain of rational integers by the system of values vv v2, v3-- xv r2, r3, 
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.... vv 02, 03. 
461 

of the variables a,. a2. a,.p,. p2. p3.fx. f2, f3. 

Suggestion: We may suppose without loss of generality that the individual 

variables a,. a2, a3,.... if any, are the particular variables z,. z2, z3. 

Adjoin to r all of the wffs xt 4= xk for which the subscripts / and k are 

distinct positive integers, also all of the wffs 

for which 0,(ul, u. uhf) is truth, and also all of the wffs 

for which 0,(14,, ut.m„() is falsehood. Let the class of wffs so obtained 

be r'\ and let be obtained from /” by adjoining further all of the wffs 

Vi + xt f°r which the subscripts j and k are arbitrary positive integers, and 

all of the wffs yt =# yk for which the subscripts / and k are distinct positive 

integers. Show that Z1' is consistent, hence that every finite subclass of 71" 

is consistent. Hence use the result of exercise 48.7 to show that T" is 

simultaneously satisfiable in an enumerably infinite domain The individ¬ 

uals of the domain 3 which serve as values of x,. x2, x3.. . . may be identi¬ 

fied with the positive integers 1. 2, 3_respectively. Besides these 3 

necessarily includes infinitely many other individuals, which may then be 

identified in some arbitrary way with the non-positive integers 0. — 1 —2 

48.23. As a corollary of the foregoing, prove the following metatheorem: 

Let r be a (finite or infinite) class of wffs of F/p. and let one of the functional 

variables occurring in wffs of r be the binary functional variable s. Suppose 

t0 the particular domains of positive integers and of rational integers 

^finit^ y/,0n,‘e^e,nt,aI'the substance of the metatheorem being that an enumerably 
SrSL-Sl01/ ' e" - enumcrab|y *nfin'te domain together with such a system 
LaNe nf Va"ab,ef. “ to sat,sfy r simultaneously in that domain) ,s always 
capable of an enumerably infinite extension. The result is substantially due to A. Mal- 

the or^ofUhu-hi?6 Reeu?*M«Mnu«*V*' vol. 43 (ns. vol. 1) (1936). pp. 323-336. and 
ownPDroof iJiUgg.Csted afcfve emP'°ys some of Malcev’s ideas. Although Malcev’s 

foTsat Sib,htv^7 m rCg.trd VhC U$e Wh'ch he makcs of the Skolem normal form 
f V' appears that the defect is not difficult to remedy-by supplying an 

32s A obt^23l?,0n °*therelat,onshlP between a model of T and a mode? oHhe 
tionalvanaWes anlt°th P S f,rS* mak,ng a suitably chosen alphabetic change of func- 

such~^ nth h “ re?UC,fg evfry wff t0 Skolem normal f°rm ior satisfiability ,n 
that< the new functional variables introduced are all distinct from each 

eSMe^avo-d us?:^ * -- to £ p“ef 
like that suggested a^ve D satisfiability by substituting a proof 

1ST ,h“' -odd r haa an 

"* mad0 y,e,d ,h' 
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that r is simultaneously satisfiable in the domain of positive integers in 

such a way that the value of s is the successor relation, i.e., the relation a 

such that a(u, v) is truth if and only if u + 1 = v. Then Tis also simultane¬ 

ously satisfiable in an enumerably infinite domain with 0 as the value of 

s, in such a way that there is no one-to-one transformation of $ into the 

positive integers under which the relation 0 is transformed into the re¬ 

lation a.462 

48.24. Prove that, if a class of wffs of F/p is simultaneously satisfiable in 

some non-empty finite domain of individuals but is not simultaneously 

satisfiable in an enumerably infinite domain, then there is a greatest finite 

domain in which it is simultaneously satisfiable. 

49. Historical notes. The chief features which distinguish the functional 

calculi of first order (and of higher orders) from the propositional calculus, 

namely, the notion of propositional function and the use of quantifiers, 

originated with Frege in his Begrifjsschrift of 1879. 

Somewhat later, and independently, quantifiers were introduced by C. S. 

Peirce,463 who credits the idea to 0. H. Mitchell. Still later, quantifiers 

appear in the work of Schroder, Peano, Russell, and others. The terms 

"quantifier” and "quantification” are Peirce’s. The notation which we have 

been using for quantifiers is Russell’s modification of the Peano notation. 

The separation of the functional calculi of first order from those of higher 

order is implicit in Russell’s theory of types,464 or perhaps even earlier in 

Frege’s hierarchy of "Stufen" or Schroder’s hierarchy of reine Mannig- 

faltigkeiten.” The consideration by Lowenheim,465 and afterwards by 

Skolem,450 of "Zahlausdriicke" and "Zahlgleichungen” in connection with 

the Schroder calculus is in effect a treatment of the functional calculus of 

first order with equality. The singulary functional calculi of first and second 

order, with and without equality, were also treated by Behmann.467 But the 

first explicit formulation of the functional calculus of first order as an in- 

•“From this there follows quickly the result of Skolem according to which no cate¬ 

gorical system of postulates for the positive integers (whether the number of P®*™* 
is finite of infinite) can be expressed in the notation of a simple applied functional 

calculus of first order with equality. See exercise 55.18 and Reference is 
•“Sec American Journal 0/ Mathematics, vol. 7 (1886). p. 194. Peirces re _ 

probably to a paper by Mitchell in Studies in Logic (1883); but one essentaahpomt. the 
use of L operator viable in connection with the quantifier, was contributed by 

Peirce himself as a modification of Mitchell’s notation. , - •• pub- 
•“Bertrand Russell, “Mathematical Logic as Based ontheTheory 3TJJ* 

lished in the American Journal of Mathematics. vol. 30 (1908). PP- 
•“In the Mathematische Annalen. vol. 75 (I915). pp ^7-^70- Mate- 
•“In papers published in Shriller Utgit av Vtdenskapsselskapt i Knstiania. 

matisk-naturvidenskabelig Klasse, volumes for 19 9 and 1920 
•“In the Mathematische Annalen, vol. 86 (1922), pp. 163-229. 
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dependent logistic system is perhaps in the first edition of Hilbert and 

Ackermann's Grundziige der Theoretischen Logik (1928). 

For the functional calculus of first order and the functional calculus of 

second order (see Chapter V) Hilbert and Ackermann in their first edition 

employ the names "engerer Funktionenkalkiil” and "erweiterter Funk- 

tionenkalkiil” respectively. In their second edition (1938), partly following 

Hilbert and Bemays, they change these names to "engerer Pradikatenkal¬ 

kul” and "Pradikatenkalkul der zweiten Stufe." This change is based on a 

usage of the word "Pradikat” (predicate)458 which appears already in the 

first edition of Hilbert and Ackermann, but which we wish to avoid. In 

this book we have taken the term "functional calculus” from Hilbert and 

Ackermann's first edition, but have borrowed the numbering of orders 

from their second edition (where they use "Pradikatenkalkul der ersten 

Stufe” as synonymous with "engerer Pradikatenkalkul”). 

The axioms and rules of inference for the system F1 are essentially those 

of Russell in his paper of 1908,454 with some modifications, and with Russell's 

axioms for the propositional calculus replaced by those of Lukasiewicz. 

Russell, however, does not make it unmistakably clear whether he is stating 

single axioms or axiom schemata. It is possible to resolve this ambiguity in 

favor of axiom schemata, as in F1. Later statements by Russell seem to 

favor on the whole the interpretation as single axioms, but then his rules of 

inference must be augmented by adding rules of substitution, as in Fjp. 

Especially difficult is the matter of a correct statement of the rule of 

substitution for functional variables. An inadequate statement of this rule 

for the pure functional calculus of first order appears in the first edition of 

Hilbert and Ackermann (1928). There are better statements of the rule in 

Carnap’s Logische Syntax der Sprache and in Quine’s A System of Logistic 

(1934), but neither of these is fully correct. In the first volume of Hilbert 

and Bernays’s Grundlagen der Mathematik (1934) the error of Hilbert and 

Ackermann is noted,459 and a correct statement of a rule of substitution for 

is Toolied ’Ackte/Tnann- and by Hilbert and Bernays. the name "Priidikat" 

HiltS and^Bernav^l\ling"i u V ?“ "ProP°sitional functions” and which 
vo" wS) pp 7 126 ^ *** ^ Mathe- 

Syntax der Sprache 19341 Ill,*2?; \90, ;.We here the usage of Carnap (Logische 
and Bernlys^rid !£££*£&? Pfadikat'’to "hat * called by Hilbert 
of "predicate” as a '♦ Indccd CarnaP s usa&e *s nearer to the familiar use 
therefore seems to run“uf W,th ^ natural languages, and 
(cf. §08). ading in practice to confusion of use and mention 

Ac" ™:””d^'r9n381«CD„r>,1^4i,V'k “1S? " S'“"d '««»■> of Hilbert and 
.ho Udrd ediMS.- >™ ***»■ «■ 
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functional variables is given for the first time. However, Hilbert and Ber- 

nays’s form of the rule could not be used in this book, because its correctness 

depends on a special feature of their formation rule corresponding to our 

30v, according to which (Va)B is not wf if B contains a as a bound vari¬ 

able.460 And our form of the rule is to be thought of rather as compiled by 

combining the versions of Carnap and of Quine.461 

In §32 the proof of consistency of F1 which depends on **320 is taken from 

the first edition of Hilbert and Ackermann (1928). It is given in a form to 

make its character unmistakable as being purely syntactical (rather than 

semantical). But it may also be described as depending on the remark, that 

the axioms are valid in a domain consisting of a single individual and the 

rules of inference preserve this property. And in this form it becomes ob¬ 

vious how the method may be extended to prove the consistency of the 

functional calculi of higher order, in particular of the functional calculus of 

order a>. This is Herbrand’s proof462 of the consistency of the functional cal- 

44°This contravenes the idea, which is implicit in the account given in §02, and which 
would seem to the writer natural on its own account, that a constant, as distinct from a 
form, may be used with the same meaning in any context (without regard to variables 
appearing). And, more serious, it imposes in connection with the use of abbreviative 
definition the practically intolerable burden of remembering for every definiendum the 
particular bound variables that occur in the definiens. However, this latter difficulty 
does not arise for Hilbert and Bemays, because, as already noticed, they do not make 
use of abbreviative definition. 

441In the case of logistic systems which involve operators other than quantifiers, 
such as the abstraction operator X or the description operator t (see §06), correct state¬ 
ment of the rule of substitution for functional variables becomes still more troublesome 
and lengthy. For an example of a statement of the rule in such a case, reference may be made 
to COdel's On Undecidable Propositions o/ Formal Mathematical Systems (mimeographed 
lecture notes of 1934), where the full statement was included at the suggestion of S. C. 
Kleene; also to a reproduction of this statement, with modifications to adapt it to another 
system, in the present writer's review of the above-mentioned book of Quine in t e 
Bulletin o/ the American Mathematical Society, vol. 41 (1935), pp. 698-603. (The^state¬ 
ment in the Gddel notes is, however, not quite correct, but requires to be amended y 
adding to 4b on page 10 the additional condition that no bound variable of G(x) is tree 

In the case of systems having the abstraction operator X. it is possible to replace the 
rule of substitution for functional variables by a number of simpler primitive rules 
which may be thought of as constituting an analysis of it, as we shall see *“ V»»P“r 
Because of the complications which attend the rule of substitution for functional vana 
bles, even in the comparatively simple case of the functional calculus of first order, there 
therefore seems to be some ground for preferring systems (like that of Chapter AJ 
which have the operator X. However, the functional calculi, not having this operator 
have been more extensively studied; and they do have an argument economy mtteir 
favor, in view of Russell's discovery that description and abstraction operators 

442 Warsaw 1630. - 
Independently of Herbrand. and of one another thisconsistencyproof * 

riE » rasst** zi ^;:SSs 
method can be used to prove consistency of the predicative and ramified luncuo 
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culi of first and higher orders; it remains applicable if axioms of choice or 

multiplicative axioms are added (as Herbrand remarks) and if axioms of 

extensionality are also added, but not of course upon addition of any sort 

of axiom of infinity.4®3 

The remark is made in the first edition of Hilbert and Ackermann that 

the functional calculus of first order (in a formulation which is somewhat 

different from F1 or Fjp, but easily seen to be equivalent) is not complete 

with respect to the transformation of A into ~A, and the question of 

completeness in the weaker sense of **440 is put as an unsolved problem. 

The first proof of completeness in the latter sense is that of Godel,484 which is 

reproduced in §44. Another proof of completeness of the functional calculus of 

first order is due to Leon Henkin488 and is reproduced in §45 (see further §54). 

Independence of axioms for the pure functional calculus of first order was 

first treated by Godel,488 and for a formulation which is nearer to that of 

Russell454 than our Flp or Fjp. Indeed Godel adds also the axioms x = x 

and i = p, F(x) 3 F(y), and establishes the independence of the axioms 

of the resulting formulation of the pure functional calculus of first order 

with equality. He does not prove the independente of the rules of inference, 

but makes only the statement that this can easily be done. 

For the Hilbert-Ackermann formulation of the pure functional cal¬ 

culus of first order, independence of both the axioms and the rules of in¬ 

ference was treated by McKinsey.487 However, McKinsey understands the 

independence of a rule of inference in a weaker sense than that which we have 

adopted, and his proofs are not in all cases sufficient to show the independ¬ 

ence of Hilbert and Ackermann’s rules in the strong sense.485 The second 

edition of Hilbert and Ackermann (1938) contains a demonstration of the 

calculi—to which axioms of reducibility may be added, if desired, as well as axioms of 
C °f extensional>ty. but not of course any axiom of infinity. 

••The terminology will be explained in Chapters V and VI. 
Monatshefte fiir Mathemalik und Physik, vol. 37 (1930), pp. 349-360. The essential 

pomte °f a completeness proof by a method similar to that of Gddel are also in Her- 
brand s dissertation of 1930-compare exercises 46.23, 46.24. The germ of the method 

(Sll L”SSe^To) ^ G6dCl W 10 h* fOUDd already in Stem's paper of 1928 

University- 1947) and in a paper in The Journal of 
Symbolic Logic, vol 14 (1949), pp. 159-166. 

«*In the paper cited in footnote 464. Compare exercise 41.1. 

JfUrnal 0/ Mathemalics. vol. 68 (1936), pp. 336-344. 
As indicated in the discussion in §41 of the rules *404. (n > 1), the weaker sense of 

JSSKlf witho“t importance. But it seems desirable to prove iide^nd- 

£e deferentTJ5 Wd 'ns^? (The question of the separate independence of 
becausethev °T McK,nsey or {or Hilbert and Ackermann tszssstss £s sr 13 a s,ng" ™'e-or-in ,hc—°f 
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independence of their axioms and rules, credited to Bernays, in which this 

defect is overcome. 

The results of §34 are found in the first edition of Hilbert and Ackermann 

(1928) in a form which differs only in detail from ours. And see also the 

discussion of "truth-functions” and "formal equivalence” in the introduc¬ 

tion to the first volume of Principia Mathematica (1910). 

Use of the prenex normal form was introduced by C. S. Peirce, although in 

a different terminology and notation.469 Peirce uses the term "Boolian” for 

what we here, following Principia Mathematica, call the matrix, and speaks 

of the prefix as "Quantifier” or "quantifiers.” The process of reduction 

to prenex normal form which is explained in §39 is to be found in substance 

in the first volume of Principia Mathematica,470 though it is there somewhat 

obscured by the peculiar doctrine that (in effect) only formulas in prenex 

normal form are to be considered wf, other formulas which we would treat 

as wf being construed, by abbreviative definition, simply as standing for 

their prenex normal forms. And from this source the reduction process 

appears in Behmann's paper of 1922, already referred to, and again in a 

paper of C. H. Langford.471 

Origin of the functional calculus of first order with equality is difficult to 

fix. In a sense, it is implicit already in the work of Peirce and Schroder. 

Especially good is the treatment of this subject in the first volume of Hilbert 

and Bernays, which contains much that we have not here touched upon. 

From this source we have taken, in particular, the results which are indi¬ 

cated in exercises 48.0, 48.4. The idea of the reduction indicated in exercise 

48.5 is due to Kalmar472 and Godel,473 and the result of the exercise is due to 

Godel.473 The simple calculus of equality has been treated in detail by 

Heinrich Scholz.474 

Developments of the last three or four decades in regard to questions of 

validity and satisfiability, the decision problem, and related matters may 

“•See a paper in The Monist, vol. 7 (1897), pp. 161-217; also his piper. £ready 
referred to, in the American Journal of Mathematics, vol. 7 (1885). pp. ,J8^?02. ana 
an otherwise unpublished addendum to the latter which appears in his Collected capers. 

°4,#Of course it fa not important in this connection that in Principia disjunction and 
negation are used as primitive connectives rather than our implication and negauon. 

as the process of reduction to prenex normal form appropriate toA°^e ^ P" 
tive sentence connectives is very easily modified to tit another^n^ ^ct the Intro¬ 
duction to the second edition of Principia indicates the modification to be made 
the case of Sheffer’s stroke as sole primitive sentence connective 701. 

471 In the Bulletin of the American Mathematical Society. vol 32 (1926) see p. 
*,tAc/a Scientarum Mathematicarum. vol. 4 no. 4 (1929), pp. 248-26 . 

474In the paper cited in footnote 464. 
4,4In his Metaphysik als Strenge Wissenschaft. 1941. 
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perhaps be dated from Lowenheim's paper of 1915.476 This contains the 

following results regarding the functional calculus of first order with equal¬ 

ity: a solution of the decision problem for validity in the case that only 

singulary functional variables appear; a reduction of the general case of the 

decision problem for validity to that in which only binary functional vari¬ 

ables appear; recognition of the existence of wffs that are valid in every 

finite domain but not valid in an infinite domain, and a demonstration 

that no wff containing only singulary functional variables can have this 

property; finally, a proof of the metatheorem now known as Lowenheim’s 

theorem, i.e., **450 and the extension of **450 which is stated in exercise 

48.6. 

After the pioneering work of Lowenheim there followed the contributions 

of Skolem in his papers of 1919 and 1920.476 The first paper contains, in 

effect, a solution of the decision problem for validity for the singulaiy func¬ 

tional calculus of second order, including at the same time an improved form 

of the solution for the singulary functional calculus of first order with equal¬ 

ity. In the paper of 1920 the Skolem normal form for satisfiability is intro¬ 

duced and is used to obtain a simpler proof of Lowenheim’s theorem. The 

point of view of satisfiability is adopted in this paper rather than that of 

validity (as by Lowenheim), and Lowenheim’s theorem is therefore restated 

in the form of **451 and the extension of **451 to Fz. Also Skolem’s gen¬ 

eralization of Lowenheim’s theorem, **455, is here proved for the first time. 

Behmann’s paper477 of 1922 contains the result of exercise 39.6, and solu¬ 

tions of the decision problem for validity for the singulary functional cal¬ 

culus of first order, the singulary functional calculus of first order with 

equality, and the singulary functional calculus of second order. For the 

singulary functional calculus of first order Behmann’s method, with some 

modifications due to Quine,478 is reproduced in §46 above. And for the sin¬ 

gulary functional calculus of first order with equality Behmann’s method is 

sketched in exercise 48.14. The latter method is similar to that of Skolem in 

some important respects, but seems to have been found independently by 
Behmann. 

The reduction of a wff A of the singulary functional calculus of first order 

to the form B which is described in exercise 46.1(1) is due in substance to 

4,4Cited in footnote 455. 
4,4Cited in footnote 456. 
4nCited in footnote 457. 

paleSoHlh? TKe °f ?ymbolic L°S'C- vol. 10 (1945). pp. 1-12. Com- 

5 In B?ma?n5 method which is «iven by Hilbert and Ber- nays, Grundlagen der Mathemalik. vol. 1 (1934). pp. 193-195. 
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Herbrand,479 and the resulting form of the solution of the decision problem 

of the singulary functional calculus of first order which is given in 46.1(2) 

is due to Quine.480 

The first treatment of cases of the decision problem in which functional 

variables other than singulary may appear is in a paper by Paul Bernays 

and Moses Schonfinkel in 1928.481 This paper contains a solution of case I 

of the decision problem of the functional calculus of first order which (ex¬ 

cept that only the decision problem for validity is treated) is substantially 

the same as that given in §46 above. Also a solution of case Vlj of the de¬ 

cision problem for validity, and the solution of case III (singulary functional 

calculus of first order) which is reproduced above in **466 and its proof. 

The subsequent history of work on the decision problem has already been 

given in some detail in §§46 and 47, including exercises and footnotes to these 

sections. It remains only to mention the paper of F. P. Ramsey482 dealing 

with the special case of the decision problem of the pure functional calculus 

of first order with equality for which a solution is indicated in exercises 

48.12, 48.13. (The method of these two exercises is, however, much simpler 

than that of Ramsey.) 

In a paper of 1929,483 Skolem gives a new proof of his generalization of 

Lowenheim’s theorem in which the result is freed of dependence on the axiom 

of choice,484 and at the same time use of the Skolem normal form is avoided. 

The metatheorem **453 is due to Godel,486 as well as the extension of 

**453 to the pure functional calculus of first order with equality (48.7). 

The proof of **453 which is given in §45 is due to Henkin, as well as the proof 

of Skolem's generalization of Lowenheim’s theorem (**455) which is based 

on this,486 and the remark of exercise 45.4. 

47*In his dissertation, cited in footnote 442, Chapter 2, §9.2. 
4MIn his 0 Sentido da Nova Ldgica, S4o Paulo, Brazil, 1944. 
i,lMathematische Annalen, vol. 99 (1928), pp. 342-372. 

Proceedings of the London Mathematical Society, ser. 2 vol. 30 (1930), pp. 204--S0. 
Reprinted in Ramsey's The Foundations o/ Mathematics and Other Logical Essays, 

pp. 82-111. . . 
“'Skrifter utgitt av del Norske Videnshaps-Akademi i Oslo, I. Matematisk-naturviden- 

skapelig Klasse, volume for 1929. , 
««I.e., the axiom of choice is not used in the syntax language. (See the discussion oi 

the axiom of choice in Chapter VI.) 
4,tIn the paper cited in footnote 404. 
4,4In his dissertation, and in the paper cited in footnote 405. 



V. Functional Calculi of Second Order 

The functional calculus of second order or, as we shall also say (in order 

to distinguish from the ramified functional calculi of second order which 

are described in § 58 below), the simple functional calculus of second order 

has, in addition to notations of the functional calculus of first order, 

quantifiers with propositional or functional variables as operator variables. 

As in the case of the functional calculus of first order, there are various 

different systems, (simple) functional calculi of second order, which we 

shall treat simultaneously. The particular formulation selected for 

treatment in this chapter we call F* (the subscript referring to the par¬ 

ticular formulation of the propositional calculus which is contained). 

Or, where necessary to distinguish the different functional calculi of second 

order, is the formulation of the pure functional calculus of second order 

treated in this chapter, ¥\-1 the singulary functional calculus of second order, 

F* * the binary functional calculus of second order, and so on. 

50. The primitive basis of F*. The primitive symbols of F* are identical 

with those of F1 or Fj (see §30). The pure functional calculus of second order 

FJp includes among its primitive symbols all ihe individual, propositional, 

and functional variables, but no (individual or functional) constants. The 

n-ary functional calculus of second order Fj*" includes all the individual and 

propositional variables, all the functional variables which are no more than 

n-ary, and no constants. An applied functional calculus of second order in¬ 

cludes at least one constant, as well as all the individual variables and at 

least one kind of functional variables. 

In order that the system be considered a functional calculus of second 

order at all, of course functional variables of one kind at least should be 

included among the primitive symbols. We shall confine our treatment to 

the case that both propositional variables and singulary functional variables 

(at least) are present, and in particular we use variables of both these kinds in 

the axioms. This is, however, not an essential point, and modification of the 

treatment to fit other cases may be left to the reader. 

The formation rules of are the same as those of F1. with removal of the 

restriction to individual variables in the fifth rule: 
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50i. A propositional variable standing alone is a wff. 

50ii. If f is an w-ary functional variable or an n-ary functional constant, 

and if alf a2, .. an are individual variables or individual constants 

or both (not necessarily all different), then f(alt a2, . .., an) is a wff. 

50iii. If T is wf, then ~r is wf. 

60iv. If r and A are wf, then [r id A] is wf. 

50v. If r is wf and a is any variable, then (Va)T is wf. 

As in the case of F1, an effective test of well-formedness follows, as well 

as uniqueness of the analysis of a wff into one of the forms ~A, [A z> B], 

(Va)A, and analogues of the metatheorems **313—**316. The terms 

antecedent, consequent, principal implication sign, converse, elementary part 

are introduced with the same meaning as for F1. 

The distinction between bound variables and Iree variables is made in the 

same way as in §30. But in the functional calculus of second order, not only 

individual variables but also propositional and functional variables may have 

bound occurrences. 

A wff will be called an n-ary form if it has exactly n different free variables, 

and it will be called a constant, or a closed wff, if it has no free variables. 

As in F1, all forms are propositional forms, and all closed wffs are sentences. 

The same methods of abbreviating wffs are used as for F1, including the 

same conventions for omission of brackets, and the definition schemata 

D3-17. In D13-17 it is to be understood that the variables a, alt a2,..., a„ 

may be of any kinds, propositional or functional as well as individual. 

Additional definitions and definition schemata may be introduced from 

time to time as required. And in particular we introduce at once the two 

following definitions: 

D20. / -► (s)s 

D21. t -* (3s)s 

The rules of inference, axiom schemata, and axioms of F2 are the follow¬ 

ing: 

*500. From A => B and A to infer B. {Rule of modus ponens.) 

*501. From A, if a is any variable, to infer (a)A. 
(Rule of generalization.) 

*502. From A, if a is an individual variable which is not free in N and b is 

an individual variable which does not occur in N, if B results from 

A by substituting S£N| for a particular occurrence of N in A, to in¬ 

fer B. (Rule of alphabetic change of bound individual variable.) 
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*503. From A, if a is an individual variable, if b is an individual variable 

or an individual constant, if no free occurrence of a in A is in a wf 

part of A of the form (b)C, to infer SJAI.500 

(Rule of substitution for individual variables.) 

f505. pzD .qz>p 

f506. S3 [/)D?]3.SD/>D.SD? 

f507. ~p ZD ~q ZD • q -P 

t508. pz>xF(x)z> .pzD (x)F(x) 

*50%. A 3p B zd . A z> (p)B, where p is any propositional variable 

which is not a free variable of A. 

*508„. Ad,Bd.Ad (f)B, where f is an n-ary functional variable which 

is not a free variable of A. 

f509. (x)F(x) zd F(y) 

*5090. (p)Az>$£A|, where p is any propositional variable.500 

*509n. (f)A n> Sb*1'** X-'A|, where f is an n-ary functional variable 

and x1( x,, .. x„ are distinct individual variables.600 

As in the case of F,p (or F|p), the principal interpretation of Fjp depends on a 
domain of individuals, which must be non-empty. Once the domain of individ¬ 
uals is chosen, the principal interpretation is given by the same semantical 
rules a-f as in §30, with the single change that in rule f the restriction is removed 
that the variable a must be an individual variable. I.e., rule f is replaced by the 
following: 

f*. Let a be any variable and let A be any wff. For a given system of values 
of the free variables of (Va)A, the value of (Va)A is t if the value of A is t for 
every value of a; and the value of (Va) A is f if the value of A is f for at least one 
value of a. 

51. Propositional calculus and laws of quantifiers. Deduction 

theorem. By *509 (with *501 and *500) the rule of substitution for prop¬ 

ositional and functional variables follows as a derived rule of Fj: 

*5100. If p is a propositional variable, if h A, then 

hSbAi. 

•510„. If f is an n-ary functional variable and xlt x„ .. .. xn are distinct 

individual variables, if h A, then 

A|. 

Now by *502. *503, and *510 we may obtain from |505-t508. f509 all 

of the axiom schemata (*302-*306) of F1 as theorem schemata of F\. Since 

5yntactical notations and “S'* have the meanings which are explained in 
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the two rules of inference (i.e., *300 and *301) of F1 are included in *500 

and *501, it follows that every theorem of F1 is a theorem of F*, with the un¬ 

derstanding that we take calculi F1 and that have the same list of primi¬ 

tive symbols. Analogously to the use of the term in §31 let us understand by 

a substitution instance of a wff A of F1 any wff B of the logistic system under 

consideration (in this chapter, the system F|) such that B is obtained from 

A by a finite succession of the substitution steps of *503, *5100, and *510n. 

Then follows: 

*511. Every substitution instance of a theorem of F1 is a theorem of Fj. 

The role of *611 as a derived rule of Fj is similar to that of *311 as a 

derived rule of F1. In using *511 in this way, we may refer to it by the 

phrase "by F1,” or "by P" (in case propositional calculus only is involved); 

or we may simply refer to one of the theorem schemata of F1 by number, 

treating it as a theorem schema of Fj. 

It is also possible to establish, as theorem schemata of F}, analogues of 

the theorem schemata of §33 in which a and b are allowed to be variables of 

arbitrary kind, instead of merely individual variables. (In the analogues 

of *330 and *339, but not in that of *336, a and b must be variables which 

are of the same kind.) The proofs follow closely those given in §33 and are 

left to the reader. 

The following analogue of *340 may also be established as a theorem 

schema of Fj (the proof follows closely that in §34, using in case 3 the 

analogue of *334 in place of *334 itself): 

*512. If B results from A by substitution of N for M at zero or more 

places (not necessarily at all occurrences of M in A), and if 

the variables alt a,,.. ., an include at least those free variables 

of M and N which occur also as bound variables of A, then 

b M =. . _N=> . A= B. 
■i ■*•••■» 

Hence, as in §34, we obtain the rule of substitutivity of equivalence as a 

derived rule: 

*513. If B results from A by substitution of N for M at zero or more places 

(not necessarily at all occurrences of M in A), if h M s N and 

b A. then b B. 

The following theorem schema is also a consequence of *512: 

*514. b S? A| z> . S£ A| id (p) A, where p is a propositional variable which is 

not a bound variable of A. 
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Proof. By *5090, h (s)~s 3 - . q g. 

Hence by P, b~(s)~s. 

I.e. (cf. D21), H. 

Also, by *509o. h / => p. 

By *512, hp = *=> . A = S?A|. 

And. by *512, h p = / ID - A = S*A|. 

Hence (using the four preceding lines) we have by P that 

hS?A| => .SJA| => A. 

Hence by *501, h (p) . S? A| => ■ S* A| Z5 A. 

Then use *5080 and P. 

The rule of alphabetic change of bound propositional and functional vari¬ 

ables may now be proved in exact analogy to the proof of *350 in §35. by 

using the analogue of *339 and using *513 in place of *342: 

*615. If a is a propositional or functional variable which is not free in N. 

and b is a variable of the same kind as a not occurring in N, if B 

results from A by substituting S£N| for a particular occurrence of N 

in A, and if h A, then h B. 

The definition of proof from hypotheses for Fj is closely analogous to that 

given in §36 for F1. The changes are that the axioms of F1 are replaced by 

those of F*. and *300 is replaced by *500, *301 by *501, *350 by *502 and 

*515, *351 by *503, and *352 by *510. Then the deduction theorem may be 

proved in the same way as in §36: 

*616. If A,. A2.An h B. then Ax. A2.\n_x I- An 3 B. 

Also we may prove an analogue of *362: 

*517. If every wff which occurs at least once in the list Al( A,__ An 

also occurs at least once in the list C„ C2.Cr and if A„ Aa. 

An I- B. then C,. C2.CrhB. 

By first proving analogues of the theorem schemata *364 and *365, we 

may establish the following derived rules facilitating the use of the existen¬ 

tial quantifier in connection with the deduction theorem: 

*518. If Aj, A2, . .., Ab h B, and a is any variable which does not occur as 

a free variable in A,. A2.AM, B, then A„ A2.An_r, (3a) . 

^n-r+iAn_T+2... An H B. (r = 1, 2,..ti.) 

•519. If Aj, A2.An b B, and a is any variable which does not occur as 

a free variable in Alt A2.An_r. then A1( A2.An_r> (3a) . 

A«-f+iAw+2... An I- (3a)B. (r = 1, 2,..., «.) 
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The discussion of duality for F* follows closely that in §37 and may be 

left to the reader. The definition of the dual is word for word the same,601 

as well as the statement of the three principles of duality which correspond 

to *372-*374 and which may be shown to hold also for Fj. 

Finally, analogues of the theorem schemata of §§37-38 may be proved in 

which a and b are allowed to be variables of arbitrary kind; and hence the 

reduction to prenex normal form (§39) may also be extended to Fj. 

It should be noticed that all the derived rules of this section including 

*510 and *515, in contrast with the remark of footnote 341 about *352, 

have been established in such a way as to show that they will continue to 

hold for a system obtained from Fj by the addition of any further axioms. 

52. Equality. 

In §48 we saw how the functional calculus of first order can be augmented by 

adding a functional constant I to denote the relation of equality, or identity, 

between individuals, together with appropriate axioms containing I. We could 

of course do the same thing in connection with the functional calculus of second 

order, so obtaining a functional calculus of second order with equality. But this 

is unnecesssary because it is in fact possible to introduce the relation of equality 

by definition in Fj. I.e., it is possible to find a wff of Fj which has the individual 

variables a and b as its only free variables and which has the value t or f (in any 

principal interpretation of Fj) according as a and b do or do not have the same 

value; one such wff of Fj is the definiens in D22 below, and the notation = 

may thus be introduced by the abbreviative definition D22.*°* 

In the functional calculi of fourth and higher orders we are able, by an exactly 

wlIn addition to D3-11 and D14, abbreviation by D20-23 may be allowed in an 
expression to be dualized. In this case, / and t are to be interchanged in dualizing, and 

also = and 4= • 
“’This definition is due to Leibniz in the form, "Eadem sunt quorum unum potest 

substitui alteri salva veritate." See Erdmann's God. Guil. Leibnitii Opera Philosophica, 
vol. 1 (1840), p. 94. and Gerhardt's Die Philosophischen Schriften von Gottfried Wilhelm 
Leibniz, vol. 7 (1890), pp. 228, 230 (also in English translation in the appendix of 
Lewis’s A Survey of Symbolic Logic). In this form there is a certain confusion of use and 
mention: things are identical if the name of one can be substituted for that of the other 
without loss of truth. Nevertheless the important idea of the definition is to be credited 

to Leibniz. •t/ioaa\ 
Frege adopts Leibniz's definition unchanged in Die Grundlagen der Arithmetic (1884). 

In Frege’s Grundgesetze der Arithmetik. vol. 1 (1893), the confusion of use and mention 
is corrected, but the principle appears in the form of an axiom rather than a definition. 
<p(z = y) z> cp((F)[F(x) => F(y)]). The first statement of the principle in the *onn a 
definition of identity and without the confusion of use and mention seems to be^n 
byC. S. Peirce in 1885 (American Journal of Mathematics, vol. 7, see page 199). « 
Russell’s The Principles of Mathematics (1903) the definition appears in the form, 
"x is identical with y if y belongs to every class to which x belongs, in other wora , 
if 'x is a «’ implies 'y is a u' for all values of u." In Principia Mathematica, vol. i 
(1910), we find the notation = introduced by an abbreviative definition which is 

substantially the same as our D22. 
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analogous definition, to introduce the relation of equality also between things 
other than individuals, allowing a and b to be, e.g., propositional or functional 

variables (of the same type). 

We add now the two following definition schemata, in which a is an in¬ 

dividual variable or individual constant and b is an individual variable or 

individual constant, and then we go on to a number of theorems and derived 

rules in the statement of which we make use of the definitions: 

D22. [a = b] - F(a) z>F F(b) 

D23. [a 4= b] -+ (3F). F(a) cf: F(b) 

f520. x = x (Reflexive law of equality.) 

Proof. By P, h F(x) id F(x). 

Generalize upon F (*501). 

f 521. x = y^.y = x (Commutative law of equality.) 

Proof. By *509lf V x = y id SylJ]xF(x) =5 F(y)|. 

Hence by modus ponens (*500). x = yYx = xzz.y = x. 

Hence by f520 and modus ponens, x = yV y = x. 

Then use the deduction theorem. 

t522. x = yz).y = zi3.x = z (Transitive law of equality.) 

Proof. By f521, x = yV y = x. 

Hence by *509,. x = y h S^’Ffy) id F(x)|. 

Then use the deduction theorem. 

t523. x = y = .y = x (Complete commutative law of equality.) 

Proof. By |521, *503, and P. 

|524. i = j/d. F(x) = F(y) 

Proof. By *509,, x = y h F(x) ID F(y). 

By |521 and *509„ x = y F(y) ID F(x). 

Then use P and the deduction theorem. 

|525. x^y = ~.x = y 

Proof. By f523 and P, h~(F)(F(y) id F(x)] = - .x = y. 

By P, h F(y) z> F(x) = ~ . F(x) £ F(y). 

Then use *513. 

f526. F(x) id . ~F(y) Z3 x 4= y 

Proof. By *509„ h z = y o . F(x) id F(y). 

Hence by P, h F(x) id . ~F(y) z> ~ . x = y. 

Then use f525 and P. 
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*527. If a is an individual variable or an individual constant, if b is an 

individual variable or an individual constant, if B results from A 

by substitution of b for zero or more free occurrences of a, no one of 

which is within a \vf part of A of the form (b)C—and not necessarily 

at all free occurrences of a in A—then ha = bZD.Ar>B 

Proof. Let x be an individual variable which does not occur in A. Take 

all the occurrences of a in A at which b is substituted in obtaining B, and 

for every such occurrence of a substitute x. And let X be the wff which re¬ 

sults from A by this substitution. 

By *509j: 

h a = b => . S"xlF(a) = F(b)|. 

I.e., I- a = b d , A d B. 

From this of course we have as corollaries, by modus ponens: 

*528. If a is an individual variable or an individual constant, if b is an 

individual variable or an individual constant, if B results from A 

by substitution of b for zero or more free occurrences of a, no one of 

which is within a wf part of A of the form (b)C—and not necessarily 

at all free occurrences of a in A—then a = b I- A 3 B. 

*529. If a is an individual variable or an individual constant, if b is an 

individual variable or an individual constant, if B results from A by 

substitution of b for zero or more free occurrences of a, no one of 

which is w'ithin a wf part of A of the form (b)C—and not necessarily 

at all free occurrences of a in A—then a = b, A h B. 

(Rule of substitutivity of equality.) 

EXERCISES 52 

52.O. Prove the following theorems of Fj: 

(1) x = z=ty = z = .x = y 

(2) x = y= . F(x) =F F(y) 

(3) F(x)= (3y) ,F(y) .x = y 

(4) F(x) d, x 4= y = ~F(y) 

(5) F(Xl, x2) =>F [F(yv y9) => F(zv zt)) = 
[xi = *,][*, = zt] v [yj = *,] [y« = 2*i 
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52.1. A formulation of the functional calculus of second order is to have 

the same primitive symbols as F2 with the omission of the notation ~A 

being introduced by definition in the way suggested in §28. Show how the 

rules and axioms of F2 are to be modified, and in an appropriate sense 

establish the equivalence of the resulting system to F*. 

52.2. A formulation of the functional calculus of second order is to have 

the same primitive symbols as F| with omission of - and of all propositional 

variables. Show how notation ~A is to be defined and how the rules and 

axioms of F2 are to be modified, and in an appropriate sense establish the 

equivalence of the resulting system to F*. Then generalize this to the case 

that not only ~ and the propositional variables are omitted but also all 

functional variables that are less than n-ary, the n-ary functional variables 

being retained. 

52.3. Extend **434 to Fap. Hence using the result of 48.5, show that every 

wff of F2P which is a theorem of F^ is also a theorem of F2P. 

52.4. Solve the decision problem for the singulary functional calculus of 

second order F**1, by adding to the reduction steps (a)-(g) of exercise 39.6 

and the reduction steps (ol)-(t)) of exercise 48.14. in the first place analogues 

°* (a)~(g) in which a is a singulary functional variable instead of an individ¬ 

ual variable, and secondly the following reduction steps (in which p is any 

propositional variable, and f is any singulary functional variable, and 

a, a,, a,,..a*,, b,, b2, ..., b„, Cj, c2, .. ., c, are distinct individual vari¬ 

ables): (A) to replace a wf part (p)E by the conjunction SJE|SJE|; (B) to 

replace a wf part (f) [f (a,) z>. f (aa) =>,... f (aj => ~f (a)] by /; (C) to replace 

a wf part (f)[~f(ai) n> .~f(a2) =>,... -ffa*,) =5 f(a)] by/; (D) to replace a 

wf part (f)[~f(ai) id —f(aa) id.... -f(aj id. f(b,) id .f(b2) z>.. . . f(b„) id 

f(a) ] by bj 4= 3 ■ b2 4= a4 id ■... b„ 4= id ■ bj 4= a2 o . b2 4= a2 id .... 

b" * .bi 4= am => . b2 4= am id .... bn 4= am id . bx 4= a => . 

b* 4= a Z3 . ... bn = a; (E) to replace a wf part (f)[Ej z> . E2 id .. . . 

(a)D] by (a) (f) [E2 zd . E2 .... En zs D] if a is not a free variable of 

E», E*"- - En: (F) to replace a wf part (f^Ej ^ . E2 ^ . En ~(a)D] 

by ^ • E2 id .... En d ~(a)D'], where E' is 

0 — 1. 2,..n), and D' is 

D| 

provided that Ej, Ea.En. D contain no bound propositional or func¬ 

tional variables other than the bound functional variable F in wf parts of 

t e form b = c or b 4= c, and D contains no bound individual variables; (G) 
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to replace a wf part (f) [Ej z>. E2 z>.... En zd ~(a) (q) (c2)... (c,). a * c, 3 . 

a #= c2 =>,... a + c,-5.q 4= CjZJ.q 4= C3 z> .... c,_2 4= c, z> .z>. 
~C2 zd .... ~C, ZD A], where C, is 

s; ai 

(] = • • •> *')» by (q) (c2) ... (cj (f) [Ej zd ■ E2 3 ■... En 3 ~(a) ■ 

a 4= q z> . a 4= c2 z> .... a 4= c, z> A], provided that Ej, E2, ..., En, A do 

not contain Cj, c2.ct as free variables, and contain no bound proposi¬ 

tional or functional variables other than the bound functional variable F in 

wf parts of the form b = c or b 4 c, and A contains no bound individual 

variables. (In all of these reduction steps of course m or n may as a special 

case be 0.) 

52.5. With the aid of the foregoing results discuss the completeness, in 

various senses, (1) of the singulary functional calculus of second order Fj\ 

and (2) of the logistic system obtained from Fj*1 by adding the following 

infinite list of axioms: (3x,) (3x2) . x1 4= x2, (3xJ (3xt) (3x,) . xt 4= x2. 

xi 4= £3 .x2 4= x3, (SxjJ^XjJfSxj 

x2 41 ^4 • 2J3 41 ^4. • • •• 
52.6. The elimination problem of the functional calculus of second order 

is the problem to find an effective procedure by which from a given wff A 

of the functional calculus of second order there is obtained a wff B of the 

functional calculus of first order with equality, such that A = B is a theorem 

of the functional calculus of second order.503 We shall here require also an 

effective procedure by which to find a proof of A = B. The wff B is then 

called the resultant of A. 

(1) Solve the elimination problem of the singulary functional calculus of 

second order F,’1 by means of the reduction steps (a)-(g), [a.)-(rj), (A)-(G) 

of 39.6, 48.14, and 52.4.504 

(2) Apply the elimination procedure found in (1) to get the resultant of 

the following wff A:505 

(3.F). F(x) z>x Gl(x) . Gt(x) z>x F(x). (3 x)[F(x)H(x)] =>.H(x) z>x F(x) 

Show that the resultant can be simplified to: 

) (3^) • *i + ^2 ■ zi + Z3 ■ *1 + X4 • xt + z3 • 

Gt(x) =>x Gx(x) . (3z)[Ga(*)ff(x)] =>.H(x) z>x Gt(x) 

52.7. (1) Solve the elimination problem for the special case of wffsof 

Fj1* of the form 

“•The elimination problem goes back to SchrOder. See an ** 'ZTln. 
Ackermann in a paper in the Mathcmatische Annalen, vol. 110 (193 )* PP* .go2 

“•This solution js due to Skolem and Behmann in their papers of 191® . ' 
referred to in §49. There is also a sketch of a solution in Ldwenheim s P»PJr of 

“•This example is taken from Ackermann's paper, cited in footnote 50 . 
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(3f) . C . f(a, b) =>^D 

where f is a binary functional variable and a and b are distinct individual 

variables, C and D contain no bound propositional or functional variables, 

D does not contain f, and the matrix M of the prenex normal form of C has 

the property that508 

hMD M|. 

Show that in this case a resultant is 

5£'bl c-i. 
where C' and D' differ from C and D by (at most) certain alphabetic changes 

of bound variables.807 Hence in particular find resultants of the following 

wffs of Fj1*: 

(2) (3F) . (x)(y)[F(x. y) 3 G(x, y)](x)(3y)[tf(x, y) z> F(x. y)) 

(3) (3F)(x)(y) . F(x, y) z> G(x, y) . Hx(x, y) => F(x, x). 

Ht(x, y) z> F(x, x)F(y, y) 

52.8. Similarly solve the elimination problem for the special case of 

wffs of Fj* of the form 

(3f) . C . D z>.b f(a, b) 

where f is a binary functional variable and a and b are distinct individual 

variables, C and D contain no bound propositional or functional variables, 

D does not contain f, and the matrix M of the prenex normal form of C has 

the property that808 

i-M d Sy*-b) M|. 

*n °tber words, M can be reduced to a disjunctive normal form (in the sense of 
ootoote 299) in which f nowhere appears with a negation sign before it. 

""The solution of this special case of the elimination problem, as well as of the special 
cases of 52.0-52.10 and the particular examples 52.7(2) and 62.7(3), are due to Acker- 
mann in his paper cited in footnote 603. 

«n.er!!Iann,!pap*r contains also a proof of the unsolvability of the general elimina- 
n problem of the functional calculus of second order, in the sense that for some wffs 

in'"wv'° Possible resultant; and a generalization of the elimination problem is treated 
of JCh resultant a wff of the functional calculus of second order is to be a class 
01 wffs of the functional calculus of first order. 

contaIinieJlyfACke,7la^n ‘n thC Maihematische Annalen. vol. Ill (1935), pp. 01-63. 

tor Se fu^tionD» °fia fiCW fUrrthCr T*1*’1 CaSCS °f the e,imination problem-not quite 
tional CalcU!US ?f s^ond order- but for a system obtained from the func- 
Mrtain^Si * ?d °rd" by add,ng “ axioras. summarized in an axiom schema. 
SSoST;' T** ° “ ^\°m °{ Ch°ice Which are exPressible in the notation of the 

\»n^L*Ctk:U US °f sccond ordcr (see §50 and footnote 655). 

gations'irn d,S^ncf|ve n°rmal form which f nowhere appears without a ne- 
gn before it. Or alternatively we might define the parity (oddness or evenness) 
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52.9. Generalize the results of 52.7(1) and 52.8,(1) by replacing f by an 

n-ary functional variable, and (2) by replacing f(a, b) by f(a,, a* ..., a„) 

= E, where E is quantifier-free and does not contain f. 

52.10. Parallel to the foregoing series of solutions of the elimination 

problem for wffs beginning with an existential quantifier (3f), find a series 

of solutions of the elimination problem for wffs beginning with a universal 

quantifier (f) (by considering the negations of the latter wffs). 

52.11. Following Behmann, show that the decision problem of the ex¬ 

tended propositional calculus may, instead of the method described in §28, 

be solved by a reduction process like that of exercise 39.6, i.e., by a reversal 

of the process of reduction to prenex normal form. 

52.12. Apply the decision procedure found in the foregoing exercise to 

the four examples of exercise 28.0. 

52.13- How may the decision procedure of exercise 52.4 be modified in 

the light of exercise 52.11? 

53. Consistency of F|. As already suggested in §49, it is possible to 

prove the consistency of F* by a very elementary syntactical argument, 

closely similar to that used in §32 to prove the consistency of F1. 

For this purpose let us take a formulation of the extended propositional 

calculus in which the primitive connectives and operator are implication, 

negation, and the universal quantifier, and let us modify as follows the de¬ 

cision procedure described in §28. Take t and / not as abbreviations of wffs 

of Fj or of the extended propositional calculus but as primitive constants 

of a formulation of the propositional calculus. Given a wff A of the extended 

propositional calculus, replace a wff part (b)B in it by the conjunction 

S?B|5JB|. 

and iterate this until all occurrences of the universal quantifier have been 

removed. If the quantifier-free formula A* which is thus obtained is a 

tautology (of the appropriate formulation of the propositional calculus), we 

shall say that A is valid. 
Thus we have an effective test for the validity of any wff of the extended 

propositional calculus. 
From any wff of F\ we obtain an associated formula of the extended prop- 

of each occurrence of an elementary part in'M as follows: when an 
stands alone, this is an even occurrence of the elementary part in -K P 
each occurrence of an elementary part is reversed as compared to K 1m * ^ 
parity is reversed for each occurrence of an elementary part in K but re ^h ^ 
in L Then the requirement here is that f shall appear only at odd places in M. 
52.7(1) the requirement is that t shall appear only at even places. 
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optional calculus (abbreviated "afep”) as follows. First we delete all those 

occurrences of the universal quantifer in which the operator variable is an 

individual variable. Then, if fv ft.t» are the distinct functional vari¬ 

ables and functional constants that appear, we select m distinct propositional 

variables p1( p„ . .., p„, not previously occurring, and we replace every wf 

part f,(a,, a,, ..., a„() by p,. and we replace every universal quantifier 

(Vf<) by (Vp,) (i =1.2-- m). 

We need not (for our present purpose) distinguish among the different 

afeps of a given wff of F}, since they differ among themselves only by alpha¬ 

betic changes of bound and free variables. 

Now every axiom of Fj has a valid afep, and the rules of inference pre¬ 

serve the property of having a valid afep, as we leave it to the reader to 

verify in detail. Hence follows: 

*•530. Every theorem of Fj has a valid afep. 

Since any afep of ~C is the negation of an afep of C, it follows that not 

both ~C and C can have a valid afep, hence by **530 that not both ~C and 

C can be theorems of Fjj. Thus we have: 

**531. Fj is consistent with respect to the transformation of C into ~C. 

**532. Fj is absolutely consistent. 

**533. Fj is consistent in the sense of Post. 

Similar syntactical consistency proofs are possible also for the functional 

calculi of higher order, employing, instead of the afep, an associated formula 

of protothetic or of higher protothetic.509 

54. Henkin’s completeness theorem.510 

The principal interpretation of F|p for a given non-empty domain 3 of individ¬ 

uals is given by rules a-e, f* of §50. We now introduce also what we call the 

interpretation of Fjp for a given domain 3 of individuals and given domains 
(classes) ft,. ft,, ft,, . . , of propositional functions of individuals, where all 

members of ft, must be singulary propositional functions whose range is the 

See §49 and footnote 462. For the singulary functional calculus of order co the 

Carri^ esP«:'al detail by Gentzen in the Mathematische Zeitschri/t, vol. 41 
iutiI PP' .k57T368‘ though in a slightly different form from that indicated here. 

th. »Ct, 'Irh‘fh is used in this section to prove a weak completeness theorem for 
Prinr^^o calculu3 of second order is due to Leon Henkin (in his dissertation, 

falso d..r*UMVe.reity’ z1?47*' Xt is essentially the same as the method used in §46 
Ctiont, ° ,Herk,n'< footJnote 466> to Prove Codel-s completeness theorem for the 
order “S °! f,rSt 0rder' And lt may ** extended to functional calculi of higher 
method whf?J°r Sy8??* “nta,mn« a suitable form of the axiom of choice the modified 

in "• •> ™‘-16 
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individuals, all members of g, must be binary propositional functions whose 

range is the ordered pairs of individuals, and so on. Namely, these new inter¬ 

pretations of Fjp are given by the same rules which give the principal inter¬ 

pretations, except that rules b„ b„ b,_are replaced by the following: 

b&- The singulary functional variables are variables having g, as their range. 

b3r«- The binary functional variables are variables having g, as their range. 

bg„. The n-ary functional variables are variables having g, as their range. 

Among these interpretations of Fjp it is clear that not all are sound. But those 

among them which are sound, and are not principal interpretations, we call 

secondary interpretations of Fjp. 

We must leave open temporarily the question of existence of such secondary 

interpretations. But an affirmative answer to this question will follow from 

results obtained below. In fact it will follow that there exist secondary inter¬ 

pretations of Fjp in which all of the domains g, g„ g„ g„ . . . are enumerably 

infinite. 

Analogously to what was done in §43, the semantical rules, just described 

in small type, may be restated and reinterpreted in such a way as to give 

them a purely syntactical character. Namely, the words ''range” and 

"value” are replaced everywhere by the phrases "range with respect to 

3» 2r*. $3- • • •” and ‘‘value with respect to 3- fo, fo, fo,.. respectively. 

And the rules are then regarded as constituting a (syntactical) definition 

of these latter phrases. 

A wff of Fjp is said to be valid with respect to the system of domains 3, 

f5i. &». • • • if it has, with respect to & 5i> • • •» the value t for all 

possible values of its free variables;611 and salisfiable with respect to the system 

of domains 3, fo, fo,.... if it has, with respect to 3. fo, the 

value t for at least one system of possible values of its free variables. (Here, 

by a "possible” value of a variable is meant a value that belongs to the range 

of the variable with respect to 3> 2fi» &•&'•• ••) 

A system of domains 3. fo. • • • 1S said to be normal if all the axioms 

of Fgp are valid with respect to it, and ever)' rule of inference of Fj’’ has the 

property of preserving validity with respect to it (i.e., the property that, 

whenever the premisses of the rule are valid with respect to 3. ?f3> • • " 

the conclusion is also valid with respect to 3. fo. • • •)• Evidently, in 

a normal system of domains, no domain is empty. 

A wff of F*p is said to be valid in the non-empty domain 3 °f individuals 

if it is valid with respect to the system of domains 3. %v 5*- 5s' • • where 

is the class of all propositional functions having the individuals (all 

members of 3) as their range, is the class of all propositional functions 

•“As usual, if there are no free variables, then, by “having the value t for all poujble 
values of its free variables,” we understand simply, denoting t. (Compare footnote ait.i 
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which have all ordered pairs of individuals as their range, and so on.611 

And a wff is said to be satisfiable in the non-empty domain $ of individuals 

if it is satisfiable with respect to this same system of domains. 

A wff is valid if it is valid in every non-empty domain 3 of individuals; 

satisfiable if it is satisfiable in some non-empty domain 3 of individuals. A 

wff is secondarily valid if it is valid with respect to every normal system of 

domains; secondarily satisfiable if it is satisfiable with respect to some normal 

system of domains. It can be shown that every secondarily valid wff is valid, 

and every satisfiable wff is secondarily satisfiable (compare the proof of 

••434). 

The universal closure of a wff B in which no free functional variable is 

more than n-ary is the wff 

Ku) K-x) ■ • • (ci) K~l_) (c;-1^)... (O ... 

(<) (<-i) • • • (cl) (c°u#) («*_,) ... (c?) (cj (cu_t) . . .(cJB. 

where c^, .are the free 6-ary functional variables of B in alpha¬ 

betic order (k = 1,2,..., n), cj. c£, . ... c°9 are the free propositional vari¬ 

ables of B in alphabetic order, and Cj, cs.cu are the free individual 

variables of B in alphabetic order. The existential closure of B is similarly 

defined, with existential quantifiers replacing the universal quantifiers. 

The following metatheorems about Ff* are proved in the same way as 

their analogues in §43: 

••540. A wff A is valid with respect to a given normal system of domains 

if and only if -A is not satisfiable with respect to that system of 

domains; valid in a given non-empty domain of individuals if and 

only if ~A is not satisfiable in that domain; valid if and only if ~A 

is not satisfiable; secondarily valid if and only if -A is not secon¬ 

darily satisfiable. 

**541. A wff A is satisfiable with respect to a given normal system of 

domains if and only if ~A is not valid with respect to that system 

of domains; satisfiable in a given non-empty domain of individuals 

if and only if -A is not valid in that domain; satisfiable if and 

only if -A is not valid; secondarily satisfiable if and only if ~A is 

not secondarily valid. 

closld^fm ^°f ,°d,v,duals f,xed as some particular non-empty domain, a 
hf sa,ld *° ** true ,f 13 valid in that domain. Since the sentences of the 

token « Mht,°nai CalCU US of second order are the same as the closed wffs, this may be 
e<luivalent of the semantical property of being a true sentence. 
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••542. A wff is valid with respect to a given normal system of domains if 

and only if its universal closure is valid with respect to that system 

of domains; valid in a given non-empty domain of individuals if 

and only if its universal closure is valid in that domain; valid if 

and only if its universal closure is valid; secondarily valid if and 

only if its universal closure is secondarily valid. 

•*543. A wff is satisfiable with respect to a given normal system of do¬ 

mains if and only if its existential closure is satisfiable (or equiva¬ 

lently, valid) with respect to that system of domains; satisfiable in 

a given non-empty domain of individuals if and only if its existential 

closure is satisfiable in that domain; secondarily satisfiable if and 

only if its existential closure is secondarily satisfiable. 

•544. Every theorem of is secondarily valid, and therefore also valid. 

As in §45, if /'is any class of wffs of any of the functional calculi of second 

order, we say that Tf- B if there are a finite number of wffs A,, A2, .... K* 

of r such that A1( A2,. . A^ h B. T is inconsistent if TV /, and in the 

contrary case r is consistent. C is inconsistent with / or consistent with / 

according as the class whose members are C and the members of /is incon¬ 

sistent or consistent. / is a maximal consistent class of closed well-formed 

formulas if T is consistent and no closed wff C is consistent with / which is 

not a member of /. 

A class r of wffs of Fj1 is said to be simultaneously satisfiable with respect 

to a system of domains if, with respect to that system of domains, all the 

wffs of r have the value t simultaneously for at least one system of possible 

values of all their free variables taken together. And / is said to be simultane¬ 

ously satisfiable in the non-empty domain ^ of individuals if it is simultane¬ 

ously satisfiable with respect to the system of domains 2fi> 2fa> • • •* 

where ^ is the class of all propositional functions having the class 3 °t 

individuals as their range, ft, is the class of all propositional functions having 

the class of ordered pairs of individuals as their range, and so on. And / is 

said to be simultaneously satisfiable if it is simultaneously satisfiable in some 

non-empty domain 

We consider an applied functional calculus of. second order, S, having as 

primitive symbols all the primitive symbols of Ff, together with the in 

vidual constants u>0. wv wt,... and, for every positive integer k, the k-xy 

functional constants u{, u\,u\.By an adaptation of the method ot 

footnote 416, we fix a particular enumeration of the closed wffs of , 
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referring to this enumeration, we speak of "the first closed wff of S,” "the 

second closed wff of S," and so on. Moreover, using this enumeration, we 

can extend an arbitrary consistent class T of closed wffs of S to a maximal 

consistent class T’ of closed wffs of S—by the same method which was used in 

§45 (compare **452 and its proof). 

Now let H be a closed wff of which is not a theorem. 

The class T0 whose single member is ~H is then a consistent class of 

wffs—of F^, and therefore also of S. We define the classes Fn by the follow¬ 

ing recursion rule:613 If the (n -f- l)th closed wff of S has the form (a)A, 

where a is an individual variable, and if in the list u-0, wv w2, . . . the first 

constant that does not occur either in A or in any member of Tn is wm, 

then Tn+l is the class whose members are 

S;„A| = (a)A 

and the members of ,Tn; if the (n + l)th closed wff of S has the form (a)A. 

where a is a &-ary functional variable (k = 1, 2, 3,. . .), and if in the list 

u^, .. . the first constant that does not occur either in A or in any 

member of Tn is u*, then r„+l is the class whose members are 

$*;A| =. (a)A 

and the members of rn\ and otherwise Tn+1 is the same as Tn. 

Then (for n = 0, 1, 2,...) r„ is a finite class of closed wffs of S. We shall 

show by mathematical induction that every Tn is consistent. 

Suppose that, for some particular n, Tn is consistent but Tn+l is incon¬ 

sistent. Then we must have the case that Tn+1 is not the same as rn but has 

the additional member 

S*A| => (a)A, 

where w is a suitably chosen constant (as described above). By the incon¬ 

sistency of rn+l, and the deduction theorem (*516), 

fn S* A| z> (a)A z> /. 

In this proof from hypotheses, replace w everywhere by a new variable x, 

which is of the same type as a and which does not otherwise occur. Since w 

does not occur in A or in any of the members of we thus have 

I '|1,^o-AdeVICe which is used at this Point was suggested to the writer by Henkin in 
juiy i960. As compared to the procedure at the corresponding point in §45. or in Hen- 

n s dissertation, it has the advantage of making it possible to replace the infinite 

r^U..CinCec0ftai?ph.ed functional S„ S„ St. . . . by the single applied functional 
h* k b' A s,miIar simplification could have been made in §45 in the proof of »*453; 

ut, because the difference in length is slight, we have there retained the older form of 
e proof (which it is thought may be instructive). 
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Z„ l-S*A| 3 (a)A 3 /. 

Hence by generalizing upon x and then using the theorem schemata *380 

and *383 (or analogues of them), 

r„Hx)S*A|z, (a)A = /. 

By alphabetic change of bound variable,614 

rn h (a)A 3 (a)A 3 /. 

But since (a)A3 (a)A is a theorem (by P), we then have.Tn h /, contrary 

to the supposed consistency of rn. 

Since ro is consistent, and the consistency of rn+l follows from that of T„ 

(as just shown), therefore every Tn is consistent. 

Let r be the union of the classes Z0, Z,, r2,..., and let Z be the extension 

of r to a maximal consistent class of closed wffs of S. 

We need the following properties of Z (where in dl-e3, A and B are 

closed wffs of S): 

dl. If A is a member of Z, then ~A is a non-member of Z (For otherwise 

Z would be inconsistent, by P.) 

d2. If A is a non-member of Z, then ~A is a member of Z. (For if A is a 

non-member of Z, then A must be inconsistent with Z; therefore, by the 

deduction theorem and P, Z f- ~A; therefore -A is consistent with Z; 
therefore ~A is a member of Z.) 

el. If B is a member of Z, then A3 B is a member of Z. (For by P, 

Z V A 3 B; thus A 3 B is consistent with Z and therefore a member of Z.) 
e2. If A is a non-member of Z, then A 3 B is a member of Z. (For by d2, 

~A is a member of /\ and therefore by P, -Th A3 B.) 

e3. If A is a member of T and B is a non-member of T, then A3 B is a 

non-member of P. (For by d2, -»B is a member of hence if A 3 B were a 

member of T1, Z would be inconsistent.) 

fl. If a is an individual or functional variable, and if, for every constant 

w of the same type as the variable a, 

s;ai 

is a member of Z, then (a)A is a member of Z. (For in consequence of the 

way in which the classes rn were defined, there is some constant w of the 

same type as the variable a such that 

•“If a does not occur as a bound variable in A, one application of *515 
Otherw.se the required result may be obtained by three or more success.ve appl.cat.ons 

of *615. 
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S* A| id (a)A 

is a member of J1, therefore a member of P.) 

fl\ If a is a propositional variable, and if both S*A| and S*A| are 

members of /\ then (a)A is a member of P. (By *514, *515.) 

f2. If a is an individual or functional variable, and if, for at least one 

constant w of the same type as the variable a, 

s;ai 

is a non-member of /\ then (a)A is a non-member of P. (By f509 and *509„.) 

f2\ If a is a propositional variable, and if either 

S*A| or S* A| 

is a non-member of f, then (a)A is a non-member of P. (By *5090.) 

To each of the individual constants wn we now assign as associated natural 

number the number n (i.e., 0 is the associated natural number of u/0, 1 is 

the associated natural number of wx, and so on). And to each of the &-ary 

functional constants wkn we assign as associated propositional function the 

£-ary propositional function 0* of natural numbers determined by the rule 

that 0*(tm8.4fc) is t or f according as u£(wUi, .wUk) is a 

member or a non-member of P. 
We shall also speak of the natural number n as associated to the constant 

wn, and of the propositional function 0J; as associated to the constant wk. 

Let the domain $ consist of the natural numbers, let the domain ^ 

consist of the associated propositional functions of all the singulary func¬ 

tional constants w\, let consist of the associated propositional functions 

of all the binary functional constants w*n, and so on. Then each of the do¬ 

mains 3. 53,... is finite or enumerably infinite.616 

With respect to the system of domains $, ft, ft, ft.the value of a 

wff X of FJp, for a given system of values of its free variables x„ x2.x,*, 
is t or f according as 

• "iw| ••• "m 1 
• 

is a member or a non-member of /*, where w, is the constant, or one of the 

constants, to which the value of x( is associated (* = 1,2.m), or in case x, 

is a propositional variable, w, is t or / according as the value of x, is t or f. 

domains % 5- S.- • • • may all be finite is realized if 
Siid^D indTs S . thlWli • -H*) ~F(y). which has a non^ 
bTSe ^erefor« “ot a theorem (**530). On the other hand, if we take H to 

be tuSwyi Se 1X101113 °f in(i“ity (SCe §57)> then 111 1116 domains must 



314 FUNCTIONAL CALCULI OF SECOND ORDER [Chap. V 

This follows, in fact, from the definition of validity with respect to a 

system of domains and from the properties dl, d2, el, e2, e3, fl, fl', f2, f2' 

listed above. 

Taking X to be the particular wff ~H, which has no free variables, and 

which is of course a member of T, we have therefore that ~H is valid 

with respect to the system of domains £j, ^2, $3. • • •• 

Taking X to be any axiom of F^, we have that 

S2?"-xi 
• W j W j llf W m 1 

is always a theorem of S and therefore a member of F. Therefore again X 

is valid with respect to the system of domains — 

In order to establish that 3. %i, fj*. fo,... are a normal system of domains, 

we have to show further that each of the four rules of inference of Fj* 

preserves validity with respect to this system of domains. In each case this 

may be done by considering the universal closure of the premiss or premisses 

of the rule and the universal closure of the conclusion, since it is obviously 

always a derived rule of inference that the universal closure of the conclusion 

may be inferred from the universal closure of the premisses. If the premisses 

are valid with respect to the system of domains in question, then by **542 

their universal closures are valid with respect to that system of domains, 

and are therefore members of /*; therefore the universal closure of the con¬ 

clusion is a member of f; therefore the universal closure of the conclusion 

is valid with respect to the system of domains in question; therefore 

finally by **542 the conclusion itself is valid with respect to that system 

of domains. 

Thus we have proved the metatheorem: 

**545. If a closed wff H of F? is not a theorem, there exists a normal 

system of finite or enumerably infinite domains with respect to 

which ~H is valid. 

Now consider a secondarily valid wff A of Fj\ and let H be the universal 

closure of A. By **542, H is also secondarily valid. Therefore there can be 

no normal system of domains with respect to which ~H is valid. Therefore 

by **545, H is a theorem of Ff. Therefore A is a theorem of F, . ^ 

Thus we have as a corollary of **545 the following metatheorem (Henkm s 

completeness theorem for the pure functional calculus of second order). 

**546. Every secondarily valid wff of Ff is a theorem. 

From one point of view. Henkin's completeness theorem ^ the fonctio^ 

calculus of second order is much like Gddel’s completeness theorem 
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functional calculus of first order, since the semantical significance in both cases 
is that all those wffs are theorems which, under all of a certain class of interpre¬ 
tations of the calculus, have the value t for all systems of values of their free 
variables. There is. however, the important difference that in the case of the pure 
functional calculus of first order the interpretations are the principal interpre¬ 
tations, whereas in the case of the pure functional calculus of second order 
they include also the secondary interpretations. At issue is the question of the 
intention in formulating the calculus; and properly speaking, Henkin's theorem 
has the meaning of a completeness theorem only if it was intended in formulating 
the pure functional calculus of second order to treat the secondary as well as the 
principal interpretations. In fact it is impossible to extend the pure functional 
calculus of second order by adding rules and axioms in such a way that the theo¬ 
rems come to coincide with the wffs which have the value t for all systems of 
values of their free variables, under all the principal interpretations. (This last 
will follow from the famous incompleteness theorems of Godel, to be discussed 
in a later chapter.) 

There is also another point of view from which Henkin's completeness theorem 
for the functional calculus of second order is weak compared to that of Godel 
for the functional calculus of first order. For we have in connection with the 
latter theorem that there is one particular interpretation (the principal inter¬ 
pretation with the natural numbers as the individuals) under which the theorems 
coincide with the wffs that have the value t for all systems of values of their 
free variables. But in the case of the pure functional calculus of second order 
there appears no such one interpretation relative to which we have completeness; 
and if in particular we adopt the principal interpretation with the natural 
numbers as the individuals, there are various independent axioms (not contain¬ 
ing any new primitive symbols) which we may be led to add, and some of the 
most immediate of which are given in §§56, 57. 

As further corollaries we have: 

**547. Every wff of Fj11 which is valid with respect to all normal systems 

of finite and enumerably infinite domains is secondarily valid, 
and valid. 

**548. Every wff of whose negation is not a theorem is satisfiable with 

respect to some normal system of finite and enumerably infinite 
domains. 

EXERCISES 54 

54*0- The wffs of the extended propositional calculus (in the formulation 

o it which is used in §53) are included among the wffs of Ff*. Hence the 

de mition in §54 of validity of wffs of F? applies in particular to wffs of the 

extended propositional calculus. (1) Prove that this definition of validity of 

s o the extended propositional calculus is equivalent to that of §53 in the 
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sense that the class of valid wffs is the same. (2) Prove that a wff of the 

extended propositional calculus is a theorem of if and only if it is valid. 

54-i- In view of the solution of the elimination problem of the singulary 

functional calculus of second order in 52.6(1), and of results concerning F/p 

obtained in exercises 48, prove that, if a wff of the singulary functional 

calculus of second order F^*1 is valid in every non-empty finite domain, 

then it is valid, and a theorem. 

54*2. Determine which of the following things are true of every normal 

system of domains $, fa, • • •> and supply a proof or disproof in each 

case: (1) ^ contains the null class and the universal class of individuals.61' 

(2) If ^ contains any two classes of individuals, it always contains also the 

class which is the union of those two classes. (3) contains the relation of 

identity or equality between individuals, and the relation of non-identity or 

diversity between individuals.616 (4) If ^2 contains any relation between 

individuals, then fa always contains the domain and the converse domain 

of that relation.617 (5) If ^f2 contains any two relations between individuals, 

it always contains also their relative product.618 

54.3 Let 3, fa, fa, ft3. ..., be a system of domains of the kind described 

in the first paragraph of §54. Show that it is a normal system of domains if 

and only if $ is non-empty and, for every wff A of F|p, for every list 

alf a2, .... an of distinct individual variables (n ^ 1), and for every system 

6 of values (with respect to fa fa, fa, fa •••) of the free variables of A 

other than ax, aa, ..., a„, there is a propositional function <P in fa such 

that 0(av at, ..., an) is always the same as the value of A with respect to 

3. Si. fa> Sa* • • • for the values av a* o{ ai- aa- • • •* an and the 
system of values 6 of the remaining free variables of A. (Notice that this 

characterization of a normal system of domains, unlike that in the text, is 

independent of the axioms and rules of inference of Fp.) 

54.4. Show (as is assumed in the text) that every consistent class of 

wffs of Ff* is a consistent class of wffs of the applied functional calculus S. 

•MAS explained in §04, we take classes to be singulary propositional functions and 

rLasss; i*™> 
to at least one thing: and the converse domain of a relationQf Helltion 5 thus the 

srs z —* 
of two relations « and V is 

two things (individuals) a and 6 if and only .f ^.re » at tolt one flung 

Zl tEindSals » Ehutnan .beings, the «**"£%** 

the relation husband and the relation daughter is the ^elftion grandparent. 
product of the relation parent and the relation parent is the relation g 
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54.5. By the methods of §54 prove: Every consistent class of wffs of Fjp 

is simultaneously satisfiable with respect to some normal system of finite 

and enumerably infinite domains. 

54.6. Supply a proof of Godel’s completeness theorem for the functional 

calculus of first order which parallels as closely as possible the proof of 

the metatheorems **545 and **546 in §54. 

55. Postulate theory.619 From the viewpoint which is explained in 

§07, when a system of postulates is used as basis for the formal treatment of 

some mathematical theory or branch of mathematics (say, for example, 

arithmetic, or Euclidean plane geometry), the postulates have to be thought 

of as added to an underlying logic. And indeed for the precise syntactical 

definition of the particular branch of mathematics it is necessary to state 

not only the specific mathematical postulates but also a formalization of 

the underlying logic, since the class of theorems belonging to the branch of 

mathematics in question is determined by both the postulates and the 

underlying logic, and could be changed by a change in either.620 

‘“For other discussions of postulate theory from the logistic standpoint see for exam¬ 
ple Carnap’s Abriss der Logistik (Vienna, 1929), Carnap's The Logical Syntax 0/ Lan¬ 
guage (New York and London, 1937), and Hilbert and Bemays’s Grundlagen der Mathe- 

matik (Berlin. 1934, 1939). Though the reader must allow for some differences in 
approach and terminology, we believe that our account of the matter is in essential 
agreement with that of these authors. 

‘“The point may be illustrated by the case of elementary number theory versus 
analysis, since these two branches of mathematics may be based if we like on the very 
same system of postulates, but with different underlying logics. Namely, elementary 
number theory may be defined by adding the postulates (A,), given below, to an applied 
functional calculus of first order containing all propositional and functional variables 
as well as the functional constants which appear in the postulates. And analysis may 
be defined by adding the same postulates to an applied functional calculus of fourth 
order since, in the resulting system, rational, real, and complex numbers may be 
introduced by any of various well-known methods for defining these numbers in terms 
of the natural numbers. 

The foregoing statement is open to certain reservations because of uncertainty as to 
exactly what should be understood by "elementary number theory" and "analysis” 
as they appear in common (informal) mathematical usage. It is the feeling of the writer, 
however, that "elementary number theory" is preferably understood in such a way as 
not to exclude the expression of certain generalities about classes and functions of 
natural numbers—as. e.g., the proposition that in every class of natural numbers there 
is a least number. 

°.?Jh,e other hand- in the system obtained by adding the postulates (A.) to an 
applied functional calculus of second order there is a certain sense in which a large part 

5*° already h* obtained, by means of appropriate artifices which are beyond 
nf fj? 0t °Ur pres€nt discussion.The decision to go as high as the functional calculus 
01 lourth order in specifying the underlying logic of mathematical analysis is thus open 
o some question but again it would seem to the writer that this best represents the 

existing informal usage. 

^ “nderlying logic is a functional calculus of second or higher order it is usual. 

“ bf]0r,J0 rep,ace the Plates (A,) by the more economical system of 
uiates (A,). However, this need not affect our present illustration, since the postu- 

«ates (A,) could always be retained if desired. 
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The present section is devoted to a digression for the further treatment of 

this matter, and the introduction of a number of examples. This seems to be 

an appropriate place for such a discussion, because in many cases it is 

sufficient to take the underlying logic to be a functional calculus of first or 

second order. 

As a first example we take the following system of postulates for arith¬ 

metic, which we shall call (A0), and for which the underlying logic is to be 

(syntactically) a simple applied functional calculus of first order. There are 

two undefined terms, the ternary functional constants E and 77; and the 

notations Z0, Zv and = are introduced by the following definition sche¬ 

mata,621 in which a and c are any variables, b is the next individual variable 

in alphabetic order after a, and d and e are the first two individual variables 

in alphabetic order distinct from each other and from a and c: 

Z0(a) - (b)r(a, b, b) 

Zj(a) - (b)77(a, b, b) 

[a = c] -► (d)(e) ,r(a, d, e) => E[c, d, e) 

The postulates include first of all the twelve following: 

(3z)£(x, y, z) 

E(x1, x2, y2) zd .E(x2, x3, y2) zd .E{yv xa, z) z> E[xl, yt, z) 

E(x, y, z) zd E(y, x, z) 

E(xi, y, z) zd .E(xj, y, z) z> . x1 = x2 

(3x)E[x, y, y) 

(3z)77[x, y, z) 

II(x1, x2, yj zd . 77(x„ x3, y2) zd •II(yl, x3, z) z> 77(xl, y2, z) 

••‘In connection with the informal statement of these ad(htioQ^ undefmed 

terms 0. 1, and = (some or all of them) would often be ^^“Xdua^nsS^ 
method shows these additional undefined terms to be unnecessary. Individual ^ns 
0 and I indeed are not provided for by the definitions winch we: pve. ^he notetions 

Z9 and Z, serve the essential purposes which would be served by the ac 

individual constants 0 and 1 as undefined terms. . „ ]dals0 ordinarily 
For the informal statement of the postulates natural °u 

be listed as an undefined term. This additional .“JE and H. 

eliminated by our present method as incorporated into function and as being 
because we regard the range of a function as detemuned by the functaon. £ 

given as soon*as the function itself is given. (ToTclirpreiers. he 
the function itself to a different function.) °r alternatavdy, Stement as rep- 
may regard the undefined term "natural number ^ '.”7 '^ naturS 
resented by the individual variables-wh.ch have the mdividuals. i.e.. w 

numbers, as their range. 
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fl(x, y, z) z> 77(y. x, z) 

TI(xl, y, z) => . 77(*,. y, z) =) Z0(y) v x, = x8 

(3x)77(x, y. y) 

77(Xj, xa, y3) ID ■ 77(Xj, x3, y3) ZD . iT(x3l x3, yx) z> . (S/2* Vs- *) ^ 77(xlt yx, z) 

Z\(y)=> ■ £(*. y.*)o~z0(*) 

Then in addition to these twelve, there is an infinite list of postulates of 

mathematical induction—as given by the following postulate schema, in 

which A is any wff not containing the variable z and B is S:A|i 

Z0(x) z> . Zx{y) d.Ad.AZj (3z)[27(x, y, z)B] zd (x)A 

This system of postulates (A0) is to be added to the simple applied 

functional calculus of first order Flh (see §30) as underlying logic. The re¬ 

sulting system is a formulation of what we shall call elementary arithmetic}3* 

Of the logistic system A0, obtained by adding the postulates (A0) to F‘\ the 

principal interpretation is the same as for F,h itself, and is given by the se¬ 

mantical rules a-f of §30. The separation of the semantical rules into two 

categories, as spoken of in §07, is by assigning the rules a0, po, y, 6, e. £ to the 

underlying logic, and thus putting them in the first category, while the rules 
*i* Pi> and pt are put in the second category. 

As a result, for the value a of a, Z„(a) denotes t or f according as a is or is not 

0, Z,(a) denotes t or f according as a is or is not 1. We may thus take these 

notations as meaning respectively that a is 0 and that a is 1. And in a similar 

way we may take the notation = as meaning equality of natural numbers. For 

although this is a different sense of " = ” or ‘'equals” from that given by D22. 

there is no reason that we should not change the sense of “equals” in connection 

with A°, since the propositional function is not changed in extension, and since 

the mathematical theory is not thereby altered formally or prevented from serv¬ 
ing its purpose. 

The first five postulates of (A0) express, in order, the existence of the sum of 

two natural numbers, the associative law of addition, the commutative law of 

aaamon, the law of cancellation for addition, and (in a weak sense) the existence 

01 an identity element for addition. The next five postulates express the five 

wn-esponding properties of multiplication of natural numbers. The eleventh 

Palate expresses the distributive law. And the twelfth postulate expresses 
that the result of adding 1 to a natural number is never 0 

schprna ^ 2? P°5tulatCS of mathematical induction-as given by the postulate 

maS7nH,wr CXP,TeS a CCrtain Particu,ar of the principle of mathe- 
otheMree ™ w’ contains no free variables except x. or else, if A contains 

tree variables, expresses a principle which (though it has some generality) 

„.,‘”^tr^UCing this term in a sense whic number theory." we distinguish from that of 4 elementary 
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is still to be regarded as obtained from the general principle of mathematical 

induction by a specialization. 

In view of the lack of functional variables, it is not possible in A0 to express 

the principle of mathematical induction as a general law. However, such an 

expression of the general principle of mathematical induction appears below 

as the final postulate of the system of postulates (A,). 

In spite of the restriction imposed by the lack of functional variables, substan¬ 

tially all the propositions of elementary number theory, as usually understood, 

can be expressed and proved in A0, excepting only those which directly require 

functional variables (such as, e.g., the principle of mathematical induction, or 

the principle that is stated in exercise 55.12). We shall not carry this out here, 

even in part, but refer the reader to the treatment of an equivalent system by 

Hilbert and Bemays in Grundlagen der Mathematik. A crucial point is the method, 

due to G6del,‘M of introducing by definition other numerical functions than 

addition and multiplication—e.g., exponentiation, the factorial, the quotient 

and remainder upon division, the nth prime number as a function of n, and in¬ 

deed recursive functions generally. 

Another example is the following system of postulates (Aj). The undefined 

terms are E and II, and the definition schemata for the notations Z0, Zx, = 

are the same as in the case of (A0). There are thirteen postulates, of which 

the first twelve are the same as the first twelve postulates of (A0), and the 

thirteenth is the postulate of mathematical induction, 

Z0(xx) 3 . Zx(y) 3 . F(xx) 3 . F(x) 3X (3z)[E(x, y, z)F{z)) 3 (x)F(x). 

The underlying logic is (or is formalized as) the functional calculus Fj*, 

i.e., a functional calculus of first order which has the ternary functional 

constants E and 77, and in addition all propositional and functional vari¬ 

ables, the same as the functional calculus Fla of 30.4 except that the rules 

and axioms of §40 are used instead of those of §30. And the logistic system 

obtained by adding the postulates (A,) to this underlying logic we shall take 

as a formulation of elementary number theory, or (as we shall also say) of 

first-order arithmetic.624 

The postulates (Ax) might of course also be added to a functional calculus 

of second or higher order as underlying logic, so obtaining a stronger system, 

»•*Monatshe/te fur Mathematik und Physik, vol. 38 (1931), see pp. 191[-193. 

*MCf. footnote 520. To logistic formulations of either elementary an^met'C tion 
order arithmetic the name Hxlbert arithmetic is often g.ven because the mtroduct.on 

of systems of this kind by Hilbert and his school. See a paper y H928) 

lunln aus dem Maih.maLhen Semina, i,, 
pp ea-85 (reprinted in the seventh edition ol Hilberts Omndhtm d„ G,owm ); 

also a paper by Ackermann in the Mathematxsche Hilbt?t'Sd Bemays 
as well as the treatment of the systems Z, Z , Z , Z , etc. y 

in Grundlagen der Mathematik. 
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but instead of this we prefer to employ the following different system of 

postulates (At), which are equivalent to (Ax) when so used. 

The postulates (A,) are essentially a form of Peano’s postulates for the 

natural numbers,5*5 as modified for use in the present context. There is a 

single undefined term, the binary functional constant S. The notations = 

and =# are those introduced in D22 and D23. And the notations Z0, Zx are 

introduced by the following definition schemata, in which a is any individual 

variable, and b is the next individual variable in alphabetic order after a: 

Z0(a) -Mb)~S(b. a) 

Z,(a) -* (3b) . Z0(b)S(b, a) 

The postulates are the five following: 

(3y)S(ar, y) 

S(x, y) zd m S(x, z) zd .y = z 

S(y, x) =3 ,S(z, x)i3 .y = z 

(3 x)Z0(x) 

Z0(x) zd . F(x) zd . F(y) [S(y, z) =>, F(z)] => (y)F(y) 

In the interpretation, the individuals are again the natural numbers. And S 

denotes the relation of having as successor, so that, if a and b are the values of a 
and b, then S(a, b) denotes t or f according as b is or is not equal to a -f- 1. 

Detailed statement of the semantical rules, for the case of a functional calculus 

of second order as underlying logic, may be supplied by analogy and is left to 
the reader. 

The notations Z0(a) and Z,(a), for a value a of a, again may be taken as mean¬ 

ing. respectively, that a is 0 and that a is 1. The sense is indeed changed as com¬ 

pared to the notations Z0 and Z, used in connection with (A0), or with (A,). 

But the fact that the corresponding propositional functions are the same in 
extension is sufficient for the purpose of the mathematical theory. 

A similar remark applies to the notations L and 77 which are introduced below 

by definition to replace the notations £ and 77 that appeared as undefined 
terms in the postulates (A,), or (A,). 

The logistic system obtained by adding the postulates (A„) to Flh we 

call A0. That obtained by adding the postulates (A,) to Fj* we call A1. 

Those obtained by adding the postulates (A,) to a functional calculus of 

ArUhmel'“* Pnncipia, Nova Methodo Exposita, Turin, 1889; Formula,rc de Mathi- 

Of ?2' Tunn> 1898- As Peano points out, his postulates are in the treatise 

Quite?5d!kine WaS Sind Und was SolUn die Zahlen? (1888), though not 
2 “ Postulates. Some of the essentials, however, are already contained in a paper 
/ . 3. t'eirce in the American Journal of Mathematics, vol. 4 (1881), pp. 85-96. 
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nth order (n = 2, 3, 4, . . .) which has all propositional and functional vari¬ 

ables appropriate to its order, and has in addition the binary functional 

constant S, we call A2, A3, A4. And we call An (« = 1, 2, 3, 4, ...) 

a formulation of nth-order arithmetic. 

The detailed development of the system A2 will be the subject of a later 

chapter. At this place, we carry the matter no further, except to state the 

following definition schemata, introducing notations E and 77 to replace 

the primitive notations E and LI of A° and A1:629 

E(a, b, c) -+ [Z0(b0) ^>b0 ■ a = co ^c„ F(K co)][-^(^o> co) ■ 
S(b0, bx) 3bi. S(c0, q) F(bv q)] z>F F(b. c) 

77(a, b, c) -> [Z0(b0) ■ Z0(c0) F(b0, c0)][F(b0, c0) ^b()Co • 

S(b0l bt) 3bi. E(a, c0, q) =>Ci F(b,. q)] z>f F(b, c) 

—where, in both cases, a, b, c are any individual variables, and b0, c0, bj, q 

are the first four individual variables in alphabetic order after the latest, 

in alphabetic order, of the variables a, b, c. 

It should be noticed that these definitions do not introduce the notations 

27 and Ft as functional constants, or as names of the propositional functions which 

in the systems A0 and A1 were denoted by 27 and 77. In fact the system A* does 

not contain names of these propositional functions, and the definitions do not 

assign any formula of A* which is abbreviated by the letter 27 or the letter 77 
standing alone. Only the complete notations 27(a, b, c) and 77(a, b, c) are 

abbreviations of formulas of A*. 
Nevertheless, for every theorem of A0 or A1 there is a corresponding theorem 

of A* in which the notations 27(a, b, c) and 77(a, b, c) of A0 or A1 are replace 

“•These two definition schemata illustrate a general method that may^be 
find expressions in the system to represent a numerical function which,in the iin 
treatment, would be introduced by means of recursion equations. The first sche , 
example, corresponds to the following recursion equations for addition: 

a + 0 = a 

a + (b + 1) = (a + £>) + 1 jor 

And the second schema similarly corresponds to the following recursion equations 

multiplication: 
ay. 0 = 0 
a x (b + 1) = a + (a X b) ^ 

This method, illustrated in the two definition schemata in the text, was *y q 
by Hilbert and Bemays in Grundlagen der Mathematik. vol. 2 (1939), S“PF! ® .. yol 47 

and by Paul Lorenzen in a paper in Monatshefle fur Mathematik und y • pe(je. 

(1938-1939), pp. 356-358. Other methods serving the same PurP“e.^eilsein thepres- 
kind (1888) and to KalmAr (1930, 1940), and might also be adapted foi £ jts 
ent connection. For an informal exposition of the matter and a bri (1940). 
history, see KalmAr's paper in Acta Scientiarum Mathematicarum, vo . 

pp. 227-232. and multiph' 
The (informally stated) recursion equations themselves for addi 3 ^ 

cation are due to C. S. Peirce in the paper cited m the preceding 
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by the different notations Z(a, b. c) and 77(a, b, c) of A*.*” And it is in this 

sense that we say that A* is adequate for elementary number theory and does 

not require the functional constants E and 77 as additional undefined terms. 

In such a case, where a complex notation introduced by definition carries the 

false appearance or suggestion that some part of the notation is to be taken as 

denoting (or otherwise as having meaning in isolation), it is usual to speak of 

contextual definition. For example, by the two definition schemata just given, 

the letters Z and 77 are contextually defined: they acquire significance only in 

the particular contexts 27(a, b. c), 77(a, b, c), and not in isolation or in other 

contexts. Similarly, by earlier definition schemata in this section—whether 

those introduced in connection with A0 and A1 or those for A*—the letters Z0 

and Z, are contextually defined. 

On the other hand, D6 (for example) would not ordinarily be called a context¬ 

ual definition of the sign = , and D24 would not be called a contextual definition 

of sa. The difference is that, in the notations which are introduced by D6 and 

D24, there is nothing which suggests that either of the signs = or = standing 

alone is significant in any way (e.g., as an abbreviation of a formula of a logistic 

system). 

Thus the contextuality of the definitions of E and 77 arises from the fact that, 

in the above definition schemata, we introduced the same parentheses and 

commas for use after the letters E and 77 that we also use after functional 

variables and functional constants. The contextual character of the definitions 

might be avoided by changing the notations E(a, b, c) and 77(a, b, c) to, say, 

£»bc and 77abc. However, the convenience of using ordinary parentheses and 

commas outweighs the possible deceptiveness,1** and the present explanation 

should serve to preclude misunderstandings. 

We turn now to consideration of another and different point of view 

towards the postulates of a mathematical theory, which is possible in certain 

connections, and which also requires explanation here. In order to distin¬ 

guish the two we may, from the point of view which we have so far been 

explaining, speak of postulates as added axioms of a logistic system and, from 

the new point of view, of postulates as propositional functions.M9 

^This will follow from our later detailed treatment of the system A*, since all the 
postulates of A® and A1 can be proved as theorems of A* when they are modified in the 
way described (i.e., when the notations E(a, b, c) and 77(a. b, c) of A® and A> are 
replaced by those of A*). 

hi**°r?e of tk*8 convenience is in the process of substitution for functional vari- 
aT*es- P°r example, the mere replacement of the ternary functional variable F every¬ 
where by the letter E represents what, in the unabbreviated notation, would appear as 
a 5°“8*d*rably more complicated substitution operation (permitted by the rule of 
substitution for functional variables). 

f,,*T^e Point of view, as described below, has long been implicit in the use made 
postulates by mathematicians, and in informal expositions of postulate theory, 

of"? “e logistic method makes possible a more accurate statement of it. This point 
Of bafJ^ee,n ,emPhasized in particular by C. J. Keyser, who speaks in this connection 

doctrinal function”—see a paper by him in The Journal of Philosophy, vol. 15 



324 FUNCTIONAL CALCULI OF SECOND ORDER [Chap. V 

It is necessary first to introduce the notion of the representing form of a 

postulate belonging to a given system of postulates.^ 

Given a system of postulates, we first select for each of the undefined 

terms a corresponding variable of the same type (i.e., an individual variable 

to correspond to an individual constant, and an n-ary functional variable 

to correspond to an n-ary functional constant), these variables being all 

different among themselves, and all of them occupying an odd-numbered 

place (first, third, fifth, etc.) in alphabetic order. To make the procedure 

definite, we are to select in each case the first available variable in alpha¬ 

betic order; and where there are several undefined terms of the same type, 

they are to be taken in their own alphabetic order (the order in which they 

were originally listed) and the corresponding variables for them are to be 

introduced in that order. Then we replace each postulate by its universal 

closure—where the "universal closure" is to be understood in the sense that 

all the free variables of the postulate are bound by initially placed universal 

quantifiers, and where therefore in some cases the expression obtained may 

not be a wff of the underlying logic of the postulates but only of the func¬ 

tional calculus of next higher order. Then in these closures of the postulates 

we make alphabetic changes of all the variables, replacing a variable that 

occupies the mth place, in the alphabetic order of variables of its type, by 

the variable of the same type that occupies the 2mth place in alphabetic 

order. Then finally in each postulate we substitute everywhere for the un¬ 

defined terms (constants) appearing, their corresponding variables. The 

result of this substitution is the representing form of the postulate. 

For example, in the system of postulates (Ax), the representing form of t e 

postulate of mathematical induction is the following wff of the pure func 

tional calculus of second order: 

(G)(*i)(y.) • (*3)^1* *3. *3) 3 • (%)*(*». h' *i) => ■ =? ■- MGl ) 
G(y) 3, (3zx)[F(y, a*. *i)Gfa)] =3 

(1918), pp. 262-267. The "abstract” treatment of a system of pojtuiates 

tions”). as described by Veblen and Young in the Introduction the same 
their Projective Geometry (first published in 1910), represents substa y 

idea, though the term "propositional function" is not actually us • ^^ed 
Neither Veblen and Young nor Keyser make the distinctionIndced 

below between the theorems and the consequences of a Carnap, 
this would hardly have been possible before the work of Ta”* { ctional calculi 

mo\Vc treat here only the case that the underlying logic is one ’ icular to one 
of not higher than second order-though extensions to other cases, m method 0f 

of the functional calculi of higher order, may be the explicit for- 
extension to functional calculi of higher order will become clear ai 
elation of these calculi which is to be given in our next chapter. 
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After having obtained thus the representing forms of the postulates, we 

may introduce also in the same way the representing form of any sentence 

or propositional form,631 B, of the logistic system which consists of the under¬ 

lying logic together with the postulates. Namely, we apply the same proce¬ 

dure to the wff B that we did to each of the postulates. 

In order to introduce the notion of a model of a system of postulates, let 

T be the class of representing forms of the postulates, and let F be the pure 

functional calculus of lowest order in which all the formulas of T are wf.633 

Then a model of the postulates is a non-empty domain $ of individuals 

together with a system of values of the free variables of the representing 

forms of the postulates which satisfies T simultaneously in ^ (or, in other 
% 

words, which gives the value t simultaneously to the representing forms of 

the postulates, according to the notion of "value" which is defined in the 

theoretical syntax of F). 

We remark that the various definitions of “value,” as introduced for the 

various pure functional calculi, are coherent in the sense that a wff A of a 

pure functional calculus F has the same value for a given system of values of 

its free variables, whether A is taken as a wff of F or as a wff of one of the 

pure functional calculi of higher order than F. In regard to the pure function¬ 

al calculi of first and second orders, this is clear from the definitions already 

given; and it will continue to hold also for the pure functional calculi of third 

and higher orders (to be discussed in Chapter VI). Hence in connection with 

a model of a system of postulates, the representing form of a wff that belongs 

to the underlying logic may be said to have a value for the model, even if 

this representing form is wf only in a functional calculus of higher order than 

is required for the representing forms of any of the postulates. 

Now given a system of postulates, instead of considering the theorems of 

the logistic system, we may consider the consequences of the postulates in 

the following different (and non-effective) sense: A sentence or propositional 

form, A, of the logistic system which consists of the underlying logic to¬ 

gether with the postulates is a consequence of the postulates if the value of the 

representing form of A is t for every model of the postulates.633 

From the point of view towards postulate theory which we are now explaining, 

each postulate is looked upon in effect as a propositional function such that a 

nip1 case °* one °* functional calculi, any wff. 
cn„„:°,r “is purpose, the pure functional calculus of first order with equality is to be 

33 hav>ng an order between the first and the second. 

tofianTvol^o“mx°f "logical consequence" introduced by Tarski, Pruglqd Filo- 

ScitHtil'iau* Vp? 19?2L?P‘ 68-68, and AeU* iu Confris International de Philosophie *cwut/tque (Pans, 1936), part VII, pp. 1-11. r 
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system of arguments of the propositional function would consist of a non-empty 

domain 0 of individuals together with a value of each of the free variables of 

the representing form of the postulate, and the value of the propositional 

function for these arguments would be the same as the value which they deter¬ 

mine of the representing form of the postulate. Similarly the complete system 

of postulates corresponds to a propositional function, of which a system of argu¬ 

ments would consist of a non-empty domain 0 of individuals together with a 

value of each of the different free variables that appear in the representing forms 

of the postulates, the value of the propositional function being t or f according 

as these arguments do or do not constitute a model of the postulates.”4 The 

consequences of the postulates—in the above non-effective sense of "conse¬ 

quence”—again correspond to propositional functions in the same way. Syn¬ 

tactically, the mathematical theory to which the postulates lead consists of 

all the wffs taken together which are consequences.*** This mathematical theory, 

however, may be expected to have many interpretations—in fact, since we 

require a principal interpretation of the underlying logic, each different model 

***We assume, in making this statement, that the number of undefined terms is 
finite. Modification to fit the contrary case could be made by considering a binary 
propositional function of which one argument would be the domain of individuals and 
the other argument would be the complete system of values of the free variables of the 

representing forms of the postulates. _ . 
‘“Contrast this with the previous point of view, according to which the mathematical 

theory consists of the theorems. 
Objection may indeed be made to this new point of view, on the basis of the sort oi 

absolutism which it presupposes—or Platonism as Bemays calls it (L‘EnsngnemenJ 

Mathimatique. vol. 34 nos. 1-2 (1935), pp. 52-69; cf. also A. Fraenkel, ibid., pp. 18-^1- 
But it should be pointed out that this Platonism is already inherent in classical matne- 
matics generally, and it is not made more acute or more doubtful, but only more con¬ 
spicuous. by its application to theoretical syntax. For our definition of the conse¬ 
quences of a system of postulates can be stated for, and treated within a formalized 
meta-language which we do not describe in detail here but which can be seeni to 
not essentially different from formalized languages which are required for the logis 

treatment of classical mathematics. . . . „ , 
There would certainly be cogent objections (cf. §07) to the proposal to introduces a 

formalized language by means of the non-effective notion of cons^ucnM. an ^ 
place in this way the initial construction of the language within what fter 
elementary syntax (§08). But after this formalization of the 

the formalization of both the object language and the meta-,“^a*5 ' 1* ge is 
non-effective notion of consequence in the theoretical syntax of the object language 

a different matter, and objections to it are on a different le\eL . ,uced it in 

It is true that the non-effective notion of consequence “ h iti*°2 (unctions 

theoretical syntax, presupposes a certain absollu£ mathe^rics^pecially classical 
of individuals. But this is presupposed also in classical mathen* mathematics 

analysis, and objections against it lead to “ 11 chapter) or the partial intui- 
as mathematical intuitionism (to be discussed n a liter chapter) or m ^ 

tionism of Hermann Weyl’s Das Konttnuum (L*ip»g. „ d to the vicious 
(In this latter book. Weyl's objections to the absolutenohonolMana^ 

circle which it is held to involve lead him to a° ^ either by the corresponding 
as follows, that the simple function^ calculi are "place Jh J (ootnote 

predicative functional calculi or by the:J?£well known, though he 
583), Russell's axioms of reducibility(§59) being J ted.‘^aches the conclusion that 

is ^ up™ -d.. 
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of the system of postulates yields one interpretation of the mathematical 

theory.1*' Thus the content of the mathematical theory is not fixed, but is itself 

to be looked on as the value of a function."’ 

The notions of consistency, independence, and completeness in connection 

with a system of postulates can be introduced in two different ways, which 

we may associate with the two different points of view towards postulate 

theory. We shall distinguish “consistency as to provability” and “consist¬ 

ency as to consequences”—and similarly in the cases of independence and 

completeness. 

The notions of consistency, independence, and completeness as to prov¬ 

ability will each depend in an essential way on the choice of the underlying 

logic as well as on the postulates themselves. But in the case of the corre¬ 

sponding notions as to consequences this dependence can be wholly or partly 

removed, as we shall see below. 

A system of postulates will be said to be consistent as to provability if the 

logistic system which consists of the postulates together with the underlying 

logic is consistent in one of our earlier senses (§17), say in the sense that there 

is no wff A such that both A and ~A are theorems.U8 

A system of postulates will be said to be consistent as to consequences if 

there is no wff A such that both A and ~A are consequences of the postu¬ 

lates. Here A is a wff of the logistic system which consists of the postulates 

together with the underlying logic. But the dependence on the underlying 

logic is removed at once by the following metatheorem (which for the mo¬ 

ment we must restrict to the case that the underlying logic is a functional 

calculus of no more than second order, but which can be generalized later 

to the case of a functional calculus of higher order): 

. . y an interpretation of the mathematical theory we mean, namely, an interpre- 
ion o the logistic system which is obtained by adjoining the postulates, as additional 

*he underly,n8 logic. This is the same sense in which an interpretation of the 
postulates is referred to in the last paragraph of §07. 

hold f adl,|a?uta8e of economy in the axiomatic method, in that the results obtained 
or * various interpretations, is a point which has been too often stressed by 

need rePetition here- (Compare the corresponding remark about the 
logistic method generally in §07.) 

of th^1S iS Keyscr's doctrinal function, referred to in footnote 529. An accurate account 

snmA ° l<?n . ?m P°‘nt °f view of the distinction of sense and denotation involves 
me TP eX,t,es and wiH not ** attempted here. 

beca..« a DCftl0n °f consistency- involving the particular symbol is sufficient here 
calculi J*? arC considerinR, as underlying logic, only the ordinary (applied) functional 

In order L »n*°U!, ?vdCrS' m ^ Particular formulations adopted in Chapters III-VI. 
in each ea«Jf ♦ "d -f account to other systems as underlying logics, it will be necessary 
Or if t0 sptclfy ‘be s'S* (primitive or defined) which has to be identified as 

which i« j done‘ then one of the other notions of consistency may be used 
is introduced in §17. 
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**550. A system of postulates is consistent as to consequences if and only 

if it has a model. 

We leave the proof of this to the reader, as well as of the following meta¬ 

theorem: 

**551. If a system of postulates is consistent as to consequences, it is 

consistent as to provability. 

In a system of postulates, the postulate A will be said to be independent as 

to provability if it is not a theorem of the logistic system which consists of the 

postulates other than A together with the underlying logic. And A will be 

said to be independent as to consequences if it is not a consequence of the other 

postulates. 

Again we leave to the reader the proof of the metatheorems: 

**552. In a system of postulates, a postulate A is independent as to con¬ 

sequences if and only if the postulates other than A have a model 

for which the value of the representing form of A is f. 

**553. In a system of postulates, if a postulate A is independent as to 

consequences, it is independent as to provability. 

The metatheorem **552 provides for the familiar method of establishing 

the independence of a postulate A in a system of postulates by exhibiting a 

model of the remaining postulates which gives to the representing form of 

A the value f. Such a model is called an independence example for A.6** 

The similar method of proving consistency of a system of postulates, 

namely, by exhibiting a model, is also well known.640 However, it happens 

in certain important cases that such a proof of consistency, though possible 

is of doubtful significance, because in establishing the existence of the model 

it is necessary to use a meta-language in which equivalents (in some relevan 

sense) of the postulates and their underlying logic are already present or 

example, the consistency of the postulates (A*), (AJ, or (A,) may be em- 

onstrated by using the natural numbers in the obvious way to provide a 

model; but this is a line of argument which evidently would carry no weight 

at all for one who had real doubts of the consistency of ordinary anthmetic 

and which, even if the purpose is only to verify the correct formalization of 

“•This method of establishing independent.of 
Rivista di Matematica, vol. 1 (1891). see PP-93”9' ^ method is to be seen still 
Geometric, first edition (1899). However, the ongm of Lobachevsky- 
earlier in connection with the non-Euchdean g bv Eueenio Beltrami (1868) and Felix 
models of the postulates of this gfor Euclid’s parallel postulate. 
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a theory already admitted informally, seems to accomplish relatively little. 

A system of postulates will be said to be complete as to provability if the 

logistic system which consists of the postulates together with the underlying 

logic is complete with respect to the transformation of A into ~A (in the 

sense of §18). In many important cases, however, such completeness is 

unattainable, as is shown in the incompleteness theorems of Godel, which 

were already referred to in the discussion following ♦*546. 

A system of postulates will be said to be complete as to consequences if, 

in the case of every wff A of the logistic system which consists of the postu¬ 

lates together with the underlying logic, the value of the representing form 

of A either is t for every model of the postulates or is f for every model of 

the postulates. 

The notion of completeness as to consequences, as thus defined, is not 

wholly free of dependence on the choice of the underlying logic. But such 

independence of the underlying logic is possessed by still a different com¬ 

pleteness notion for postulate systems, namely, that of categoricalness, due 

to Huntington and Veblen,541 which we go on to define. 

VN e consider only the case that the undefined terms belong to the notation 

of a functional calculus of first or second order, or of a functional calculus 

of first order with equality, i.e., the undefined terms are individual constants 

or functional constants in the sense of these calculi. However, the extension 

to higher cases is straightforward (compare footnote 530). 

Two models of a system of postulates are said to be isomorphic if there is 

a one-to-one correspondence between the two domains of individuals used 

m the two modelsM* such that the values given in the two models to any 

see dd 9ft4 9-V7tloft0°o'oTroola‘:i,0ni o/ the Amer,can Mathematical Society, vol. 3 (1902), 
Compare furtWh!’ 281, 0swaId Veblen. ibid., vol. 5 (1904), see pp. 346-347. 
categorical (Sl th, rema.rks ° Huntington, ibid., vol. 6 (1906), pp. 209-210. The term 

suggestion of7t to /ohn Dewly paper °f Veb,en' wh° Credits the 

lateSem^T^1*1'011 °f th?idea of categoricalness as a concept applicable to postu- 

are fou^d intheby Huntington and Veblen. results 
particular svsti™^ ? 7 a^ler wh,ch are tantamount to the categoricalness 

uj Sollen die ZahTen? !ri°S * 7* ParagraPhL134 of Dedekind’s Was Stnd und 
categoricalness of Peann’« 5?5*.,COntai?s the essent,als of the usual proof of 
below. And the result ar to„that wh,ch is described in exercise 6515 
vol. Cantor in the Mathematische Annalen. 

known characte^zatio^ of ihe r ! * a Certain SyStem of P°stulates-his well- 
dingungen^a^ ffntor nf^ v r^'l^T"^- (Dedekind speaks of "Be- 

M,Of course it is not i ^erkmale* rather than of postulates or axioms.) 

may be the same in which c^e th^ *** tW° d°mains of individuals 
one correspondence of one-to-one correspondence required is some one-to- 

one-to-one correspondence’fs ° I (V'?S °“ t0 itself' <We ^ume the term 

^ « needed! ?„ footed w Tot) ™ “ "“X 
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particular free variable occurring in the representing forms of the postulates 

always correspond to each other according to this one-to-one correspondence. 

I.e., if in the first model the value a is given to an individual variable a, 

and in the second model the value a' is given to a, then a must correspond to 

a' in the one-to-one correspondence between the two domains of individuals; 

and if in the first model the value 0 is given to an n-ary functional variable 

f, while in the second model the value 0' is given to f, then the propositional 

functions 0 and 0' must be so related that, whenever the individuals a1, at, 

..an of the first domain of individuals correspond in order to the indi¬ 

viduals av a\,..an of the second domain, the value 0{a1, a„ ..., an) 

is the same as the value 0'[a'v at,..an). 

Then a system of postulates is said to be categorical if all its models are 

isomorphic. 

We leave to the reader the proof of the following metatheorems, which 

state some obvious connections among the three notions of completeness of 

a postulate system: 

*♦554. Every system of postulates complete as to provability is complete 

as to consequences. 

**555. Every categorical system of postulates is complete as to conse¬ 

quences. 

**556. If a categorical system of postulates has a model 2R, then every 

system of postulates with the same undefined terms and the same 

underlying logic, if it is complete as to consequences and has the 

model 9JI, must be categorical. 

Finally, before concluding this section, we have to consider one other way 

in which postulates are often used. Namely, instead of serving as asis or 

a special branch of mathematics, a system of postulates may be used in the 

course of the development of some more general mathematical theory. i 

the role of a definition of some particular kind of structure which is to be 

considered in the context of the more general theory. 

As an illustration we may take the case of postulates for an .nUgral 

“ystem of postulates for an integral domain may be obtained horn 

theses Z by omitting the postulate of -thematical mdu^ , 

changing the fifth postulate to 3*)X(*. Sf. *). changmg the twdfth P* 

to (3*)<3y> - .X = y and adding the poster^SS. 
The fourth postulate then becomes non-independent and may 
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Thus, retaining the same definition schemata that were used in connection 

with (AJ, we have the following system of twelve postulates, which we shall 

call (ID): 

(3z)JT(x. y. z) 

~(*1. *» yi) =3 •-(** ys) =5 • Z\3h. ** -’) -T(xl. y„ 2) 

I(z. y, z) 3 I{y, X. z) 

(3x)I(x, y, z) 

(3z)/7(x. y. z) 

n(*i- y>) => (**. *j. ys) => • nyv x„ z) 3 n^, y„ Z) 

n(x, y, z) 3 77iy, X, j) 

/7(xl. y. r) 3 .77(xs. y, 2) =5 Z0(y) vx1 = Xj 

(3x)77(x. y. y) 

xx- Vi) => • 77(xl, x3. y,) 3 . J(xs, x3. yt) 3 . «T(yf, y,, 1) 3 77(x1. ylf z) 

(3x)(3y) ~ .x = y . 

•Ti = xs 3 . F (x,) 3 F(xs) 

When these postulates are used, not as basis for their own branch of 

mathematics, but in order to introduce in the context of a more general 

theory the term "integral domain,” or a notation serving the same purpose. 

they must be rewritten in the form of a definition schema. It would usually 

be necessary to be able to speak not only of the individuals as forming an 

integral domain with respect to a pair of operations (in the roles of addition 

and multiplication) but also of any class of individuals as forming an integral 

domain. Thus the definition schema must introduce a notation, say id(f, g. h), 

m which f and g are ternary functional variables and h is a singulary func- 
tional variable. 

-, £"? ? ValQeS <t>’ “d 6 °f 1 “d h- il must ^ Possible to understand 
■ g. ' as expressing that © is an integral domain with respect to <t> and 'P. 

m e sense of those words in informal treatments of algebra. 

As derived from the particular system of postulates (ID), this definition 
schema for id(f. g, h) is the following:*3 

i«S ?srtb,f,ts“Mp to con. 
more free Polite (fD). bul m several wa>-s. m particular it has one 
perfectly vanabIe; here given, it does not parallel the postulates quite 
erectly, some obvious simplifications by P and Fl having been made 4 
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D24. id(f, g, h) - h(z) 3X . h(y) 3V . h(z) =>,. hfe) =>Xj . h(yi) 3fi. 

h(xt) =>Xi. h(y2) Z5yj. h(z3) 3Xj. h(y3) =>fj. (3z)[h(z)f(z, y, z)) 

[f(*i. *2. yi) => ■ ^(x2< x3' yz) => -f(yi. *3.z) ^ f(*i. y2.*)] [f(*. y.z) 
f(y, z. z)] (3z)[h(z)f(z, y, z)] (3z)[h(z)g(z, y, z)] [g(zlt z2, yt)Z3 . 

g(*2. x3> y2) -g(yi. X3‘2) => &(xv y2-*)] [6(*. y.z) ^ 6(y. *. *)] 
[g(Zi, y, z) 3 . g(z2, y, z) 3 . [h(z) 3t f(y, z, z)] v . h(z) 3X . 

h(y) =>, . f(Zj, z, y) 3 f(z2, z, y)] (3z)[h(z)g(z, y, y)] 

[g(*i. xv y2) => - g(»i. X3’ y3) => • f(*2. *3. yJ => • f(y2. y3<z) => 
gfo, y2, 2)] (3x) (3y) (3z) (3z,) [h(z)h(y)h(z)h(z1)f(z, z, xl)~t(y, z, z,)] 

. [h(z) 3X . h(y) 3, . f(x1, z, y) 3 f(z2, z. y)] 3 . F(zl) 3f F(zt) 

In many informal treatments of abstract algebra in the literature, systems of 

postulates for a group, a ring, an integral domain, a field, etc. enter in this 

way—in the role not of axioms but of definitions which, in a corresponding 

formalized treatment, would appear as definition schemata analogous to D24. 

And the formalization of such a treatment of abstract algebra would then be 

a development within a pure functional calculus of second order, say F|p, with 

perhaps the axiom of well-ordering of the individuals and an axiom of infinity 

(see §§56, 57), one or both, as added axioms. Or it may well be necessary for 

the sake of some parts of the development to use a functional calculus of 

higher order than the second—this will depend on just what the content 

of abstract algebra is conceived to be. In any case, abstract algebra is thus 

formalized within one of the pure functional calculi, and in this sense we may 

say if we like that it has been reduced to a branch of pure logic. 

Many other branches of mathematics are customarily treated in a similar 

way. so that their formalization brings them entirely within one of the pure 

functional calculi. And though it is more natural or more usual in some cases 
than others, it seems clear that every branch of mathematics might be treated 

in this way if we chose. For example, instead of deriving elementary number 

theory from the postulates (A,) in the role of axioms added to an underlying 

logic, we might transform these postulates into a definition of the term an 

arithmetic” (in the formalized treatment, a definition schema), and en re¬ 

state and re-prove all the usual theorems of elementary number theory as general 

theorems about “an arithmetic.”144 . 
Thus it is possible to say that all of mathematics is reducible to pan tope. 

and to maintain that logic and mathematics should be ctaracteii^ t ^ 

different subjects, but as elementary and advanced parts of the same subject. 

-As long as it is deshed only to reproduce (in this sense) 1*. theory,ofAJ 

Fjp. no added axioms are necessary. Also the theorem‘ added axioms. But 
one arithmetic (to within a one-to-one corresP°nJ* > xpressing that there exist at 
for some other theorems, in particular for V1 . ^ axiom of well-ordering 
least one arithmetic, an axiom of infinity and perhaps also the axiom 

* .*—- 
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EXERCISES 55 

55.O, Extend the principles of duality, *372-*374. to a logistic system 

obtained by adding arbitrary postulates to an applied functional calculus 

of second order as underlying logic. Carry out the proof in such a way as 

to include as a special case a proof of the principles of duality for the pure 

functional calculus of second order. 

55.*. Prove the following as theorems of the logistic system A° without 

making use of any of the postulates (AJ (thus also as theorems of Flh): 

(1) x = x 

(2) x = yzD .y = z=> .x = z 

(3) i = p. Z0(z) => Z0(y) 

55.2. Prove the following as theorems of the logistic system A0, using 

only the first four of the postulates (A0): 

(!) Z0(x) zd . Z0(y) z> .x = y 

(2) £(*. y. zi) . £(x. y. zt) 3 . zx = zt 

(3) x = y ZD . y = x 

SS-3. Prove the following (in order) as theorems of the logistic system A0, 

using only the first five of the postulates (AJ: 

W (3*)Z0(z) 

(2) *1 = 2, 3 .1(x, y, z,) z> £(x, y, z,) 

55,4, With the aid of the results of preceding exercises (if needed), prove 

the following as a theorem of A<>, using only the first nine of the postu¬ 
lates (A*): ^ 

n(x. y, z,) 3 .77(x, y, zt) ZD . zx = zt 

55*5* With the aid of the results of preceding exercises, prove the follow¬ 

ing as theorems of A0, using only the first eleven of the postulates (A*): 

(1) Z0(y) zd 17(x, y, y) 

^ *i = zt=> .II (x, y, Zt) ZD n (x, y, z,) 

yi = y»=> .17(X. yt, Z) zz> 77(X, yx, z) 

(4) Zo(z) =>./7(x, y, z) ZD Z0(x) v Z0(y) 

® (3x)Zi(x) 

**»???of ScTd'ftlt fciv f°rriexa“P,e' ^ an “iom of 
« soon as such an aidom “s added * ends *nd begins 
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55.6. Prove the following theorems of the logistic system which is ob¬ 

tained by adding the first eleven of the postulates (ID) to Flh as underlying 

logic: 

(1) Z{x, y, h) => ■ Z(x- y> h) =>'h = zi 

(2) E[xi> y>z) ^ m£(xt> y<z) ^ • x\ — x2 

(3) z0(x) z> . Zx(y) z> -. X = y 

55.7. Show that every theorem of A1 which contains no functional vari¬ 

ables is also a theorem of A0. 

55-8- In the system of postulates (AJ, establish the independence of the 

seventh postulate (the associative law of multiplication) by means of the 

following independence example. The individuals are the four natural num¬ 

bers 0, 1, 2, 3, and addition and multiplication are as given in the following 

tables: 

+ 0 1 2 3 X 0 1 2 3 

0 0 1 2 3 "o’ 0 0 0 0 

1 1 0 3 2 1 0 1 3 2 

2 2 3 0 1 2 0 3 2 1 

3 3 2 1 0 3 0 2 1 3 

(I.e., more explicitly, in the representing forms of the postulates the func¬ 

tional variables corresponding to L and 77 are F* and 77s respectively; and 

in the model which constitutes the independence example, the value of 

F3 is the propositional function 0 such that <P[a, b, c) is t if and only 1 

a + b = c according to the first of the above tables, and the value of H 

is the propositional function IP such that W(a, b, c) is t if and only xi a xb-c 

according to the second of the above tables.) 
e e.o. In the system of postulates (A,), establish the independence of he 

eighth postulate (the commutative law of multiplication) by means of he 

XlPg independence examp,e. The individuals are 0 and «e «phr 

numbers a + /?.' in which a and fi are positive rational ate 

is taken in the usual way. A product is 0 if e.ther factor » «.»" 

(a + fi) x (y + ft) - + fir* <the Products *and bemg 

thessTo. Establish the independence of the remaining postulates of (A,) 

of independence examples. 
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55*12. Express by means of a wff of A‘ that the only ternary relation, 
among natural numbers a, b, c. that satisfies the second pair of recursion equa¬ 
tions of footnote 526 and the further condition that c is uniquely determined 
when a and b are given is the ternary relation <Z> such that <Z>(a, b. c) holds when 
and only when a x b = c (in the sense that any ternary relation among natural 
numbers satisfying the two recursion equations and the further condition is 
formally equivalent to <P). 

55.13. Prove the wff of the preceding exercise as a theorem of A1. 

(Make use of the postulate of mathematical induction.) 

55.14. For A1, suppose that the signs 0 and 1 are introduced by contex¬ 

tual definition, according to the following definition schema. Of the signs 

a1( aa.an, let some (possibly) be 0’s, let others (possibly) be l’s, and let 

the remainder be individual variables (not necessarily all different); let f 

be any n-ary functional variable or functional constant, let x and y be the 

first two (distinct) individual variables in alphabetic order that do not occur 

among alf aa, . . ., an, and let bj, b2.b„ be obtained from alf aa,..a„ by 

replacing the sign 0 everywhere by x and the sign 1 everywhere by y; then 

f(ai. a2.an) -*• (SxMByHZoWZ^yWb,. *>2.bn)]. 

For expressions which abbreviate wffs of A1 according to this definition 

schema, establish as a derived rule a rule of substitution for individual 

variables, allowing to be substituted for an individual variable not only 

another individual variable but also one of the signs 0, l.548 

55‘15* Prove that the system of postulates (A,) is categorical. (Sugges¬ 

tion: In one model let 0 and W be the values of the functional variables 

that correspond to X and 77 respectively, and in a second model let 0' and 

V be the values of the functional variables that correspond to X and 77 re¬ 

spectively. In the first domain of individuals there must be two unique 

individuals 0 and 1. distinct from each other, such that 0(0, b, b) and 

■P(l, b, b) hold for all individuals b of the domain. In the second domain of 

individuals there must be two unique individuals 0' and 1', distinct from 

each other, such that 0'(OM) and ¥"(1', b. b) hold for all individuals 

b of the domain. The required one-to-one correspondence between the two 

domains is that in which 0 corresponds to O', and 1 corresponds to 1', and 

M‘Compare footnote 528. 

Th.s defm.t.on schema may be thought of as a modified form of a special case of 
inifT* * s c°ntextuaf definition of descriptions, i.e., of his schema for contextual def- 

, tl]e not^tion (»x)A; see the American Journal 0/ Mathematics, vol. 30 (1908) 
V1'38^'*1 case- following the remark of Herbrand in Comptes Rendus des 

s ** la Sociiti des Sciences et des Lettres de Varsovie, Classe III, vol. 24 (1931) 

vant’We ^lablu t0 simPHfy the definitions (contained in the schema) by taking ad¬ 
vantage of the theorems, Z0(x) =>. Z,(y) => * = y and Zl(r) =>. Z,(y) x = y. of A«. 
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whenever a corresponds to a', and 0(a, 1, c) and &'(a', 1', c') hold in the 

respective domains, then c corresponds to c'. The proof proceeds in the meta¬ 

language by the method of mathematical induction.) 

55.16. Hence show that the postulates (A0) with Flh as underlying logic 

are complete as to consequences. 

55.37, Show that the postulates (A0) are not categorical because, besides 

the obvious model with the natural numbers as the individuals, there is also 

the following model. The individuals are the positive and negative integers 

and 0. The value of the functional variable corresponding to E is the ter¬ 

nary relation that holds among a, b, c if and only if |a| 4- l&l = lcl- And the 

value of the functional variable corresponding to 77 is the ternary relation 

that holds among a, b, c if and only if \ab\ = |c|. 

55.18. The non-categoricalness of the postulates (A0) as established in the 

preceding exercise may be thought to be of relatively trivial character, 

since there does exist a one-many correspondence between the domains of 

individuals of the two models such that the values of the functional variables 

corresponding to E, and to 77, in the two models correspond to each other 

according to the one-many correspondence. The second model could more¬ 

over be excluded by taking an appropriate simple applied functional cal¬ 

culus of first order with equality as underlying logic, and replacing "xl = xt 

in the fourth and ninth postulates by "7^, *2)”. Let the system of postu¬ 

lates so obtained from (A0) be called (A,), and let the logistic system ob¬ 

tained by adding them to the appropriate simple applied functional calcuus 

of first order with equality be called A1. (1) Show that the postulates (A, 

are complete as to consequences. (2) By means of the metatheorems of 

exercise 48.22, establish the non-categoricalness of (A7), and hence a 0 e 

non-categoricalness of (A0) in a less trivial sense.547 f 

e 5. iq. Let V be a binary functional constant, and consider the system 0! 

postulates consisting of the single postulate (x)(y)W(x, y), added to a s.mpk 

applied functional calculus of first order, having V as rts one funct.onrd 

constant, as underlying logic. Show that this system o pos a es 

as to consequences but not categorical. „n«t„lates 
55.20. Show that in every model of the following sys em P° 

the domain of individuals is finite, but that there exist models wi ana*, 

trarily large finite domain of individuals. There is one undfaedt™ 
b ^ functional constant S. The underlying logic is an applied functional 

M,This is a special case of the result of 
a different method from that suggested 

vol. 23 (1934). pp. 150-161. 

Skolem stated in 
here, is given in 

footnote 452. His proof, by 
Fundamenta Malhemaltcae, 



§55] EXERCISES 55 337 

calculus of first order with equality, having among its primitive symbols 

all propositional and functional variables, and S as its one functional 

constant. The postulates are: 

S(x, y) zd . S(x, z) zd .y = z 

F(x) zd . F(y) zdv [S(y, z) zd, F(*)] id (y)F(y) 

55,*1, To the postulates of the preceding exercise let the following in¬ 

finite list of postulates be added: 

(3y)S(z, y) 

■S(x,, x2) ZD , xx =$= x2 

S(X„ x2) ZD ,S[x2, x3) ZD.XJ * x3 

S(Xj, X2) ^ ■ S(x2, X3) ZD a S(x3, Xt) Dilj Xt 

xi) ^ ■ S(xi> xi) ^ • S(x3, x4) ZD a S(x4, X5) ZD a xl 4= X6 

Show that the resulting system of postulates is consistent as to provability 

but not consistent as to consequences.548 

55-22. The following are informally stated postulates for partial order, with 
a relation precedes as the one undefined term:*4* 

No individual precedes itself. 

If a precedes b and b precedes c, then a precedes c. 

From these a system of postulates for simple order is obtained by adding the 
following third postulate:*10 

“•This is an adaptation of an example due to Tarski—see Monatshefte fur Mathe- 

?nd physih. vol. 40 (1933). pp. 97-112. By making use of the GOdel incompiete- 
ess theorems (to be treated in a later chapter), it is also possible to find a finite 
ys em of postulates which is consistent as to provability without being consistent as 

to consequences. 

w***11?* na^e."Partial|y ordered class” is taken from the German "teilweise geordnete 
nge of Felix Hausdorff's Grundziige der Mengenlehre (Leipzig, 1914), p. 139, where 

®enfr“ notion of partial order (as distinguished from the treatment of particular 
ca^Lseems to have been first introduced. 

in thj def,mtion of simple order should perhaps be credited to C. S. Peirce, who 
definfn™ nC?n J°Urnal 01 Mathematics, vol. 4 (1881), p. 86, gives a closely related 
above) ' 'D tCrmS °f * reIatlon anal°gous to ^ (rather than to < as in the exercise 

ei£ndK ''^0n simPle order in terms of the relation precedes (analogous to <) is 

new seH«° 1' Gao"?.TJ“ ‘n the Zti,schrif lUr Philosophic und Phitosophische Kntik. 
Cantor vo1' 88 (188°). PP- 183-184. The same definition is used also by Georg 

Abhandlunil AnnaUn• vo1- 46 (1895). P- 496 (or see his Gesammelle 
from a maif* f9®)* and lt ,s probable that Gutberlct may have taken the definition 

his own^StSIilS °^V>k (SeC GesamnulU Abhandlungen. pp. 388. 482-483), though 
state exnliJftlv 5 the matter ,s not ent,rely clear. Both Gutberlct and Cantor 
condition tiaf y,the Iast two of the three postulates given above, but the additional 

ion that no element precedes itself is tacitly intended, at least by Cantor, as is 
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If a and b are any two different individuals, either a precedes b or b precedes a. 

From these in turn a system of postulates for well-ordering is obtained by 

adding the fourth postulate:651 

In any non-empty class of individuals there is a first individual, i.e., an in¬ 

dividual that precedes all the others in the class. 

(1) With a binary functional constant R denoting the relation of preceding, 

restate these postulates in the notation of an appropriate functional calculus of 

first order. (2) Hence, by the method which is used in the text to transform the 

postulates (ID) into the definition schema D24 for id(f, g, h), find expressions 

for each of the following, in the notation of the pure functional calculus of 

second order: the class V (of individuals) is partially ordered by the relation <P; the 

class V is simply ordered by the relation d>\ the class V is well-ordered by the 

relation Q. 
55.23. In the case of each of the following systems of postulates found in the 

literature, restate the postulates in the notation of an appropriate functional 

calculus (of not higher than second order), using the indicated functional con¬ 

stants as the undefined terms: 
(1) Postulates for Euclidean plane geometry. Veblen and Young, Projective 

Geometry, Volume 2. §66, pp. 144-146. O, denoting the ternary relation among 

ABC, that A, B.C are in the order {ABC)', C. denoting the quaternary re¬ 

lation among A, B.C, D, that AB is congruent to CD. (Omit the continuity 

postulate, XVII. In stating the postulate XVI. use may be made of the postu¬ 

lates (A„), as they are stated above, but modified as required, in particular by 

replacing the functional constant S by a binary functional variable.) 

(2) The same postulates with the following continuity postulate added. I 

is a non-empty class of points of a line .. if £ and C are points of n such that 

every point X of K is in the order {XBC}. there rs a point A of.«such that 

every £sint X ol K distinct from A is in the order (XAC). and no pom 

the order (ZAC) has the property that every point X of K is m the ori'VCZC). 

(3) Postulates for (real) projective plane geometry H S. M Coxeter, 7' 

tea!Project Plane. 2.21-2.25 (p. 12). 3.11-3.16 (p. » . and lib 

P, denoting the class of points; L, denoting the class of lines, I. S 

clear from Mathemaeische Annalen. vol. 49 (1897). p. 216 (or GesammeU. AM"****. 

P The’condition that no element precedes ^tb^f 

“IsCp" MC^«: ^by Giovanni Va.lad in MW * *—» 

V°“lThe notion oTa well-ordemd d-hd-£ ^ 

Allgemeinen Mannigfaltxgkeitskhre. & v®, 2 n 883). p. 393, or Gesammelte Ab- 
vol 21 (1883). p. 648, or Acta Mathemalica. voi. > £mewhat different from, 

Zndlungen. p! ?68). Cantor’s of the fourth pos- 
but equivalent to. what is now the us £ ‘ presupposed the notion of simple 
tulate above. Moreover Cantor at ^ t y P de‘J["tion of simple order wa 
order in giving the definition of well-ordmnng 

supplied in 1896. as explained In the preceoing 
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relation of incidence; S, denoting the quaternary relation of separation.“* 

(4) Postulates for Euclidean three-dimensional geometry. David Hilbert, 

Grundlagen der Geometric, seventh edition (1930), §§1-8. O, C, P, L, and I as in 

parts (1) and (3); n, denoting the class of planes; i, denoting the relation of 

incidence between points and planes; K, denoting the senary relation among 

A, B, C, A', B', C, that the angle ABC is congruent to the angle A'B'C'. 

Special attention must be given to the postulate of linear completeness (‘‘Axiom 

der linearen Vollstandigkeit”), whose expression in the notation of a functional 

calculus of no higher than second order offers some difficulty, and of which some 

restatement or modification may be necessary in order to render such expression 

possible. 

(5) Postulates for (real) projective three-dimensional geometry. Mario Pieri, 

Memorie della Reale Accademia delle Science di Torino, ser. 2 vol. 48 (1899), 

pp. 1-56. J, denoting the ternary relation among a, b, c, that c is on the straight 
line joining a and b. 

(0) E. V. Huntington's postulates 1-14 for “the theory of real quantities,” 

Transactions of the American Mathematical Society, vol. 4 (1903), pp. 358-370. 

(7) Church’s postulates for “the seccnd ordinal class,” or second number class, 

of Cantor, Transactions of the American Mathematical Society, vol. 29 (1927), 
p. 179. 

(8) A. Lindenbaum’s postulates for a metric space,“* Fundamenta Mathe- 

ma/icae, vol. 8 (1926), p. 211; given also by C. Kuratowski, Topologie I, first 

edition (1933), pp. 82-83, or second edition (1948), p. 99. (For the introduction 

of the notion of real number, make use of the postulates of part (6) of this 

exercise, or of some other system of postulates serving the same purpose.) 

(9) Postulates for a complete space,obtained from the foregoing by adding 

the postulate that is given by Kuratowski, Topologie I, first edition, p. 196, or 
second edition, p. 312. 

55.24; I" a many-sorted functional calculus*** (of first or higher order) there 

are individual variables of more than one sort, the different sorts being distin¬ 

guished by superscripts, and an infinite list of individual variables of each sort 

being available. Say in an n-sorted functional calculus the individual variables 

o the first sort are x\ ylt zl, x{, . . . ; those of the second sort are x\ y1, z*, z\... ; 

and so on. up to x", y», r», x\, . . . as individual variables of the nth sort. There 

^ notion of an infinite sequence of individuals which enters in 

priatel?°S!!lfr9Jn^y ** Provided for by making use of the postulates (A,) appro- 
(IDI in modlbed- (Compare the procedure in the text in transforming the postulates 
in* tw “ ,inte?ral domain into a propositional form with three free variables, express- 

a class is an integral domain with respect to two ternary relations.) 

are °f aJnetric sPace and that of a complete (or complete metric) space 
Rendiconti ,Fr^het‘ though in 3 different terminology. See his thesis in the 
the MaUmatico di Palermo, vol. 22 (1906). pp. 1-74. and a paper in 

the American Mathematical Society, vol. 19 (1918), pp. 63-66. 
PP 485-fiOfla/^jbj Anlold Shmidt in the Mathematische Annalen, vol. 116 (1938), 
Schmidt in ^ 4180 ‘mproved treatments of the same topic by Arnold 
Wang i^£*IMathe™a*'“}»A''*aUn. vol. 123 (1951), pp. 187-200, and by Hao 

« ihe Journal of Symbolic Logic, vol. 17 (1962), pp. 106-116.) 
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are (or may be) then n sorts of singulary functional variables, again distinguished 
by superscripts, an infinite list of each sort; thus F1, G1, H', F}, ... as singulary 
functional variables of the first sort, F\ G*, H*. Ff, . . . as singulary functional 
variables of the second sort, and so on. And where a is an individual variable 
and f is a singulary functional variable, f(a) is wf if and only if f and a are of the 
same sort. There are (or may be) n* sorts of binary functional variables, distin¬ 
guished by superscripts thus: F1-*, G1-1, IP-1, FJ-1,... ; F1-*, G1-’, //*•*, Fj>*; and 
so on. And, for example, F^fa^ a,) is wf if and only if a, is an individual 
variable of the second sort and a, is an individual variable of the first sort. 
Similarly there are (or may be) n* sorts of ternary functional variables, and so on. 

For the principal interpretation of an n-sorted functional calculus, there must 
be a non-empty domain of individuals of the first sort, which is the range of the 
individual variables of the first sort; a non-empty domain of individuals of the 
second sort, which is the range of the individual variables of the second sort; 
and so on (n domains of individuals altogether). The various functional variables 
then have ranges consisting of propositional functions in a way which will be 
obvious by analogy with the principal interpretations already given (in Chapters 
III and V) for the one-sorted functional calculi of first and second order. 

For an applied (as distinguished from a pure) n-sorted functional calculus there 
may also be individual and functional constants, each of which must belong to 
a particular sort in the same way as the individual and functional variables. 

Taking the remaining primitive symbols to be the eight improper symbols 
listed at the beginning of §30, we may use for an n-sorted functional calculus of 
first order the formation rules of §30, except that 30ii is modified in the way 
indicated in the first paragraph of this exercise; the rules of inference and axiom 
schemata may then be the same as in §30, except that to *306 the requirement is 
added that b must be of the same sort as a. An n-sorted functional calculus°! 
second order may be formulated similarly, with appropriate provision added lor 

quantification of functional variables. . 
(1) State in full a primitive basis for an n-sorted functional calculus of second 

order, as closely as possible analogous to the primitive basis for Ff given m §5 
For a fixed k, show that those theorems of the system which contain m ivi 
variables of only the kth sort are (apart from trivial notational differe ) 

same as the theorems of Fj. . , . , 
(2) With a two-sorted functional calculus of second order as underlying lope 

taking the indiv,duals of the first sort to be the points, and the md.v.duato of tt. 

second sort to be the lines, and taking as undefined terms a b.muy 

- 

r^^-^”divid- being the points, the lines, the 

individuals being the points of the space and the real num 
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(6) The logistic system of part (2) of this exercise (i.e., the logistic system 

obtained by adding the indicated postulates to the underlying logic) is in an 

appropriate sense equivalent to the logistic system of 55.23(3). In a like sense, 

the logistic system of part (3) is equivalent to that of 55.23(4), and the logistic 

system of part (4) is equivalent to that of 55.23(8). Explain in what sense the 

equivalence holds. And state and prove a general metatheorem establishing the 

appropriate equivalence in all such cases. (Cf. the papers of footnote 554.) 

56. Well-ordering of the individuals. Returning to consideration of 

the pure functional calculus of second order Fj1’, we now take up the question 

of axioms expressible in the notation of the pure functional calculus of 

second order, alone, which—for some purposes or in some connections—it 

may be desirable to adjoin to Fj1* as additional axioms. 

One such axiom, the possible addition of which to FJ* we shall wish to con¬ 

sider, is an axiom to the effect that the individuals can be well-ordered. 

In order to express this, we may make use of the definition of well-ordering 

which was given in 55.22, writing the conjunction of the universal closures of 

the four postulates of 55.22, replacing the undefined term "precedes’' everywhere 

by the functional variable F*, and then prefixing the existential quantifier 

(3F*) to this conjunction. The resulting expression may be simplified, however, 

by omitting the third postulate, which can be shown to be non-independent. 

Thus we obtain the axiom (w) which is written below. 

The axioms of choice are reserved for discussion id connection with the func¬ 

tional calculi of higher order, although certain special cases of an axiom of choice 

can be stated already in the notation of the functional calculus of second order 

and summarized in an axiom schema."4 We anticipate this discussion here so 

far as to say that it will follow, from the axioms of choice, not only that the indi¬ 

viduals can be well-ordered but also various higher domains—in particular that 

the singulary propositional functions (classes) of individuals can be well- 

ordered. the binary propositional functions of individuals, and so on—and con¬ 

versely that the axioms of choice will follow from such assumptions of well¬ 
ordering. 

However, our present axiom (w) must not be considered as representing a 

special case or a weak form of an axiom of choice. For the effect when we add 

i as an axiom to FJP is just that we restrict the interpretation to such domains 

o individuals as are capable of being well-ordered, a procedure which should 

acceptable even to those who distrust or prefer not to assume any axiom of 

“*The axiom schema in question is 

where WflOA^ 
ft U !„*,'*V f*.*• are distinct individual variables, f is an n-ary functional variable 

of either ft or and A is a wff containing no bound occurrences 
Logit, seconH ,,^5" by Hl,bert and Ackermann. Grundiuge der theoretischen 
ofV'^ edjtlon (1938), p. 104, and third edition (1949), p. 111; also in the paper 

Ackermann mentioned in the last paragraph of footnote 507. P ^ 
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Thus the following axiom of well-ordering of the individuals—or axiom 

(w), as we shall also call it—is to be considered as a possible added axiom: 

(3F) . (z)~F(z, z) . F(x, y) 3XV [F(y, z) =>x F{x, z)] . 

G(x) =3Cx (3y) . G(y) . G{z) z>r F{y, z)vy = z 

Following a method of naming that we adopt as systematic, we call the 

resulting logistic system F|p(w) when the axiom (w) is added to the logistic 

system F^. 

EXERCISES 56 

56.0. Restate (w) as an equivalent axiom in prenex normal form, with 

only four different individual variables, one singulary functional variable, 

and one binary functional variable. 

56.1. Prove the statement made in the text that the third of the four 

postulates for well-ordering (55.22) is non-independent. 

56.2. State and prove as a theorem of F*p,,rt that the individuals can be 
simply ordered. (Use the definition of simple order given in 55.22.) 

56.3. It follows from axiom (w) that every relation between individuals 
has a many-one subrelation with the same domain.»“ Expressed in the notation 

of the functional calculus of second order, this is:MT 

(3G). G(x, z) =>„ F(x, z). F(x, z) (3zj). G{x, z) =, z = zx 

Prove this as a theorem of FJp1" . 

56.4. Prove the same theorem in the logistic system that is obtained by 

adding to F^ the axiom schema of footnote 555. 

57 Axiom of infinity. A wff of one of the functional calculi may be 

considered as an ax,on, of infinity if it is valid in at least one infinite domain 

of individuals but is not valid in any finite domain of individual. 

Of the pure functional calculus of first order with equality, and therefor 

also of the pure functional calculus of first order, there is in fact no wff 

“♦One relation is said to be a subnotion of a second .°n*^ * JTissaid to 
second one, in the sense of formal unphca o xp unique corresponding 
be many-one if for every member a Elation * to 6. Moreover 
member b of the converse domam of * smch th man ne; and one-to-one if both it 

and'hs*conveme^arc the explanation of terminology in footnote 

6 ^Compare IJilbe^a°^ g 0D **** H1* 
edition (1938), formula g on page 104, ana urn 
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which may thus be considered an axiom of infinity.558 Therefore the various 

axioms of infinity which we discuss in this section are wffs only of the pure 

functional calculus of second order.559 

An effect of adjoining an axiom of infinity to F’p as additional axiom is of 

course to restrict the interpretation to domains of individuals which are infinite. 

We prefer to take an axiom of infinity which imposes no great further restriction 

on the interpretation, beyond the exclusion of finite domains of individuals.1*0 

Consider for example the wff which results when we write the conjunction of 

the universal closures of the postulates (A2) of §55, replace the functional con¬ 

stant S everywhere by the functional variable G\ and then prefix the existential 

quantifier (3G*) to this conjunction. As an axiom added to FJP, this wff would 

restrict the domain of individuals not merely to be infinite but moreover to be 

enumerably infinite. This is too severe a restriction for what we regard as the 

purpose of an axiom of infinity. But a more acceptable axiom of infinity, namely 

(co3) (or (oo4)) below, may be obtained by treating similarly four (or three) 
of the five postulates (A,). 

Of various alternative axioms of infinity which we might consider adjoin¬ 

ing to FjP as additional axioms, we list here the five following, (ool)-(oo5): 

(ool) (3F)(x1)(xa)(x3)(3«/) . F(xv x8) => [F(x2> x3) => F(xx. x3)] . 

~F(xi> xj F(xlty) 

(co2) (3F)(x)(3y)(*) . F(z, x) zd F(z, y) . ~F(x, x) F(x, y) 

(®3) (3F) . (x)(3y)F(x. y) . F(x, y) =>xv [F(x, z)=>,y = z]. 

F(y. x) =>*„ (7(*. x)zD,y = z]m (3x)(y)~F(y, x) 

j- F°r an 4X10111 of infinity that would be valid in an enumerably infinite domain of 

“i‘V‘dUfS' ,th,S ,S a corol,ary of exercise 48.24. The same result can be obtained for an 
,m 01 ,n , ty val,d only in a non-enumerably infinite domain of individuals by 

e,.r-"£ UAC o°o an ax‘°m of choice in the meta-language and following the method of 
Daiv-r^*!.'2 , Was done by Leon Henkin in his dissertation of 1947 and in the 
P Mrri.Clted m footnote 465. (Compare further footnote 451.) 

higher!! arC alS° axioms of infinity which are wffs only of functional calculi of still 
vSulZ- ,D partic.ular the "Infin ax” °f Principia Mathematica as it would be re¬ 
definition^#0)^ .°otatlo“' 40d the three axioms of infinity that correspond to Tarski’s 

ucjl °° °f (‘niteness I, II, III m Fundamtnla Maihematicae, vol. 6 (1924), pp. 46. 93. 
i»/im(vTrd,ate y suggests itself to introduce a more restricted notion of an axiom of 
infinite’H«riin,nlaf 1X10111 of mfinity (syntactically) as a wff which is valid in every 
meta-lanv.^n ?0t *“ ^“y fm,tc domain- This might indeed be done in a suitable 
one propoS axiom ^Jh?JK>Ult o£ V,e?v of justifying °r explaining a preference for 
W J mf,n‘ty over another, the effect is less satisfactory than might 
decision as toSSS' *he “ore restricted notion of an axiom of infinity the 
axiom of infinit!) w£fs («l)-(cofi) given below actually is to be classed as an 
for the dep€nds on what are taken as definitions of "infinite” and "finite” 

language in ^ °n **“ axioms of the (ultimately formalized) meta- 
of infinity MdS^presence andthe form of axioms PIayin8 the role of axioms 
Stances 2 la ^“P"? a similar remark by Mostowski. Camples rendus des 

niti des Sciences et des Lettres de Farrow'*, Classe III, vol. 31 (1938), p. 16.) 
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(co4) (3-F) - {x)$y)F{x, y) . F(y, x) Z>„ [F{z, x) z>t y = z]. 

(3z)(t/KF(y, x) 

(co5) -(3G)(F) . G(x, y) =>„ [G(x, z)=>ty = z], F(x) =>z . 

F(y)3v[G(y,z) 3zF(z)]3 (y)F(y) 

Of these, (ool) has an obvious relationship to the example of Bemays 

and Schonfinkel of a wff of the pure functional calculus of first order which 

is satisfiable in an infinite domain of individuals but not in any finite 

domains;5®1 (co2), to Schiitte’s example of such a wff of the pure functional 

calculus of first order;582 (co3) and (co4), to the Peano postulates, (A2); 

and (oo5), to the postulates of exercise 55.20.583 

(co3) expresses the existence of a one-to-one correspondence between the in¬ 

dividuals and a proper subclass of the individuals.1*4 Therefore it may also be 

thought of as derived from the Peirce-Dedekind definition of an infinite class as 

one having a one-to-one correspondence with a proper subclass.*** 

(oo4) expresses the existence of a one-many correspondence of the individuals 

to a proper subclass of the individuals, and thus represents a modified form of the 

Peirce-Dedekind definition of an infinite class. 

It is not to be expected that these and other axioms of infinity which we 

might consider will turn out all to be equivalent to one another in the sense 

that the (material) equivalence of any two of them is a theorem of F^\ 

In fact, let B be called weaker than A if A => B is a theorem of but 

*«In the paper cited in footnote 481. Compare also exercise 43.5(2). 

***In his paper cited in footnote 430. Compare also «exercise 
»**The axiom (co5) of the writer's monograph of 1944 hass here beeiai s«mp 

accordance with a suggestion made by Paul Bemays ,n a ^ 
The idea of the axiom, that the individuals cannot be arranged in a closed cyclic order, 
is taken from Dedekind's second definition of finite n^swh.ch waspvenin thereto* 
to the second edition (1893) of his Was Sind und was Sollcn dxe ZahUn?^concerning 

which see further §7 of a paper by Alfred Tarski in 
(1924) pd 83-93 and a paper by Jean Cavailtes. ibid, vol. 19 (193 PP- . 

to a secod -.<£“^,££52 
the second one (compare footnote 556); and if m addi {irst class is ^d 

of the second class which is not a member of the firstclass. ondence between two 
to be a proper subclass of the second one. By a ™e'° 556 having one class as 
classes is meant a one-to-one relation, in the sen . fThese terms familiar in 
its domain and the other class as ite convey domain, ^hes^are to ^ 

mathematical writing generally, such as we h thenotionofaone-toone 
reader without the need for special explanation. p ^ definition of categorical- 
correspondence has been used in "439 and its proof ^in 65.18.) 
ness in §55, the notions of many-one and one-many P * 202; Richard 

***C. S. Peirce. American Journal of 'arigraph 64. As Dedekind 
Dedekind, Was Sind und was Sollen d\\Za* ™? ^ Gne-to-onf correspondence of an 

swiMrsr22& - - 
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B 3 A is not a theorem of F^\ Then according to a result due to Andrzej 

Mostowski566 and B. A. Trachtenbrot,567 there is no weakest axiom of in¬ 

finity, i.e., more exactly, given any axiom of infinity, there exists a weaker 

axiom of infinity.5®5 

As regards the particular axioms of infinity, (ool )-(oc5), some of the im¬ 

plications and equivalences which hold among them are indicated in the 

following exercises (together with similar considerations concerning a few 

additional axioms of infinity introduced in the exercises). These are stated 

in each case in the form that a particular axiom of infinity is a theorem of 

the logistic system obtained from by adding one of the other axioms of 

infinity, with or without also the axiom of well-ordering of the individuals. 

But in view of the deduction theorem, they could also be put (without im¬ 

portant difference) in the form that certain implications and equivalences 

are theorems of FjP. 

EXERCISES 57 

57-0. Restate (ooo) as an equivalent axiom in prenex normal form, with 

no free variables, and with the shortest prefix that can be obtained by use of 

propositional calculus and elementary laws of quantifiers in a straight¬ 

forward process of reduction. 

57.1. According to the result just stated (without proof) in the text, if 

A is any axiom of infinity there exists an axiom of infinity B such that A 3 B 

but not B3 A is a theorem of FjP. Assuming this, show that, if A is any 

axiom of infinity, there exists an axiom of infinity B such that A 3 B but 

not B 3 A is a theorem of F^'*''. 

57*2. Restate in the notation of F|p (as closely as possible) the following 
informally stated axioms of infinity: 

(®6) There is a subclass of the individuals isomorphic to the natural numbers 
as given by the Peano postulates. 

ru%('°Tr^teS Rendus des Stances de la Societi des Sciences el des Lettres de Varsovie 
HI- vol. 31 (1938), pp. 13-20. 

Akad*mii Nauk SSSR. vol. 70 (1950). pp. 569-572. 
and th* ^Iostowskl and Trachtenbrot deal with logistic systems different from F{d. 

rathe fK ^ direct,y the <luestion a strongest definition of finiteness (of a class) 
not of a weakest axiom of infinity. The result stated in the text is thus 
are mo Clt,y <?ontained in their papers but must be inferred from them. Both papers 
are ;?tractS in which Proofs are not given of the results announced, but what 
(tiven in TPS ICuCnt. ,nd,cat*°ns to make possible a reconstruction of the proofs are 
Logic voi^fr S paper and ,n Mostowski's review of it in The Journal of Symbolic 

6 VOi* (1950), p. 229. 
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(x 7) If the individuals can be simply ordered, they can be put into a simple 

order in which there is no last individual.*** 

(k8) There exists a one-many correspondence of a class of individuals to 

itself that is not a one-to-one correspondence of that class of individuals to itself. 

(cc9) The individuals cannot be simply ordered in such a way that in every 

non-empty class of individuals there is both a first individual and a last individ¬ 

ual.570 

(oolO) There exist at least two different individuals, and there exists a one- 

many correspondence of the ordered pairs of individuals to the individuals.*71 

(Suggestion: A correspondence between the ordered pairs of individuals and the 

individuals may be thought of as a ternary propositional function and thus rep¬ 

resented by a ternary functional variable.) 

57.3. Prove each of the following as a theorem of Ff,(xS): (x6); 

(xl); (x2); (x5). 

57.4. Prove (x3) as a theorem of f^5|w,(x41. 

57.5. (1) Prove (x9) as theorem of Fjp,x51. (2) Prove (xo) as a theorem 

of F^'*9'. 

57.6. Prove (x3) as a theorem of Fjpl*',x5,.S72 

57.7. Prove (xo) as a theorem of F*p,x4). 

57.8. Prove (xo) as a theorem of Ff51**1. 

58. The predicative and ramified functional calculi of second 

order. 

Objections against the absolute notion of all— as it is involved, e.g.. in the 

notion of all classes of individuals, without qualification—have already been 

discussed briefly in footnote 535. There is much difference of opinion among 

mathematicians regarding the significance of these objections, some holding 

them to be pointless and others believing that they cast serious doubts on the 

methods used and the results obtained in large parts of classical mathematics. 

Our purpose in this section is not to debate the question of significance but to 

make a proposed definition of these objections—or of one form of them bv 

***This axiom of infinity is suggested by the defmitionof fl“lte°“? ^ DeJ?cKen 
bv H. Weber and slightly simplified by J. humchak. See Jahresber, ^ ^ 

Mat he mat i ker- Vereinigung, vol. 15 (190 b). p. 1-7. and vol. ofPa partial order 
lationship should also be noticed to (col), which asserts the existe pan 
of the individuals in which there is no last indmduah Deutsche** 

"•Suggested by Paul Stackers definition of finiteness. JahresbencM ae 

definition E. . . . . follows from a result obtained 
»7*That this cannot be done without using axio ( ) skoAczcmoici w Systemic 

by Mostowski in his dissertation. 0 Auza^zn^C. SJ-,U Poionatse de Mathematique, 
Logiki. published as a supplement to Annales de la Sociite Polona 

vol. 11 (1938). pp. 1-54. 
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formulating as a logistic system the weakened functional calculus of second order 

to which they lead. 

In the form in which we wish to take them here, these objections may be said 

to have originated in Henri Poincare’s condemnation of what he called impre- 

dicative definitions, i.e., '‘definitions par . . . une relation entre l’objet k d6finir 

et tous les individus d un genre dont l’objet k definir est suppose faire lui-mfime 

partie (ou bien dont sont supposes faire partie des fitres qui ne peuvent fitre eux 

mfimes definis que par l’objet k definir)."67* This was afterwards embodied in 

Russell’s vicious-circle principle that "no totality can contain members de¬ 

fined in terms of itself," or "whatever contains an apparent variable must not 

be a possible value of that variable."17* Also Weyl objects in a similar way to 

what he takes to be a vicious circle in classical analysis.*7* 

As understood by Russell in particular (and by Whitehead and Russell in 

Principia Mathematica) the vicious-circle principle constitutes a restriction upon 

the possible range of a propositional or functional variable, and hence a restric¬ 

tion upon substitutions for such a variable. The application of this to the func¬ 

tional calculus of second order affects primarily the axiom schemata *509 and 

leads first to the predicative functional calculus of second order and then to the 

ramified functional calculi of second order, as these are formulated below.iff 

#7*The quotation is from a paper by Poincar* in "Scientia," vol. 12 (1912). see p. 7. 
For the earliest statement of Poincare’s objection against impredicative definitions 
( definitions non predicatives") see the Revue de Mitaphysique et de Morale, vol. 14 
(1906). p. 307. 

*74It is not certain, however, that the vicious-circle principle of Russell is the same 
thing that Poincare intended, since Poincare never made a systematic development of 
his ideas in this direction and the examples which he gives (informally) of impredicative 
definition are not sufficient to determine what would have been his verdict regarding 
other examples of what might be considered impredicative definition. 

In a paper in the Revue de Mitaphysique et de Morale. vol. 17 (1909), pp. 461-482 
(afterwards reprinted as Chapter IV of Demiires Pensies (1913)), there is a discussion 
y Poincarg of Russell's "hierarchy of types." i.e., of the (higher-order) ramified func- 
onal calculus which Russell introduced as based on the vicious-circle principle. From 
is it is perhaps fair to infer that Poincar4 regarded the vicious-circle principle as being 

in general accord with his own ideas; but that he was unwilling to accept without re- 
serva ions the ramified functional calculus which Russell proposed as embodying it— 
even i modified by omission of Russell's axioms of rcducibility, discussed in our next 
section. y 

• Poincar6 (unlike Weyl) believed or hoped that all of classical mathemat- 
of . developed without resort to impredicative definition once the postulates 

thmetic, including the postulate of mathematical induction, are granted. Compare 
AACta Mathematica> vo1- 32 (1909), pp. 195-200. especially §5. pp. 198-200. 

enf wf ?,mertcan Journal of Mathematics, vol. 30 (1908), p. 237. The term" appar- 

varifthE!”b/e< \S ?Sed by Russe11 in ^ sense in which have been using "bound 
orinrinl* io footnote 28), and the second quoted statement of the vicious-circle 
a hnmwf 8 .f, ore to ** rendercd in OUT terminology as follows: a wff which contains 

*w5!?*k ab C mUSt not denote one of the va]ues in the range of that variable, 

dune d^r Anaeixp a“atl?u inr h,iS papcr' “Dcr Circulus Vitiosus in der Heutigen Bcgriln- 
(1919). pj ^92 m ttC Jahresbericht ^ Deu*“hen Mathematiher-Vereinigung, vol. 28 

iuterDretaff^i^ hfTlt0 decide upon or state the semantical rules for a principal 
But^re 0t the Predicative or ramified functional calculi of second order, 

remark that, in order to accord with the motivation as just described, it is 
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It should be noticed that the functional calculus of first order remains un¬ 

affected by the vicious-circle principle. 

The predicative functional calculus of second order in the formulation 

F|! has the same primitive symbols and the same wffs as the simple func¬ 

tional calculus of second order F®. A distinction is made of pure and ap¬ 

plied, of singulary, binary, etc., predicative functional calculi of second 

order in the same way as for the simple functional calculus of second order; 

but where the term “predicative functional calculus of second order” is used 

without qualification, we shall understand that propositional variables and 

functional variables of all kinds—singulary, binary, ternary, etc.—are con¬ 

tained, with or without individual and functional constants. 

The four rules of inference *500-*503 remain the same for F|’ as for Fj. 

The axioms of Fj1 are given by the following seven axiom schemata (the 

relationship of which to the axioms and axiom schemata of Fj will be evi¬ 

dent): 

Ad.Bd A 

Ad[BdC]d.AdBd.AdC 

~A d ~B id • B D A 

A Dt B d . A D (a)B, where a is a variable of any kind that is not a 

free variable of A. 

(a) A => $JA|, where a is an individual variable, b is an individual variable 

or an individual constant, and no free occurrence of a in A is in a wf part 

of A of the form (b)C. 

necessary to abandon the idea that a sentence denotes one 
and f. and hence to avoid taking these two truth-values as 
variables, or classes and relations in extension as values of the *uncbonal vamD 

The standpoint of Russell in 1908. and of Whitehead and RusseU»tedSito 
Principia Mathemalica. is apparently best represented by and prop- 

propositions, taking propositions as values of the j bIes And the more 
erties and relations in intension as values of the {urctaonal Second Edition of 
extensions view advocated by RusseU in his " ° by means Gf an 
Principia Mathemalica (cf. footnote 590) can perhaps be represen d by 

infinite list of truth-values, namely, two touth-values t ^/-^“3ueB of the 
values of the propositional variables ofmth level be gt^ ••having the ordered 
n-ary functional variables of mth level being functions (in ^ 

n-tuples of individuals as their range, and having » reproduction of Russell’s own 
It must be added at once that the aud appeudice, 

pS £^to whioh Russell -ould T 

not consent. 
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(p)AD SgAl, where p is a propositional variable, and B contains no 

bound propositional or functional variables. 

(f)A z> Sg*1'**.*a)A|, where f is an n-ary functional variable, and 

x,, x2,.. ., x„ are distinct individual variables, and B contains no bound 

propositional or functional variables. 

The characteristic feature is the restriction upon substitution for propo¬ 

sitional and functional variables that is contained in the last two schemata, 

the restriction, namely, that B must not contain bound propositional or 

functional variables. And indeed if this restriction were removed we would 

obtain merely another system of axioms and rules for the simple functional 

calculus of second order. 

The predicative functional calculus of second order is the same (apart 

from trivial notational differences) as the ramified functional calculus of 

second order and first level, and its propositional and functional variables 

are said to be predicative, or of the first level.676 In the ramified functional 

calculi of second order and higher levels, additional propositional and func¬ 

tional variables are introduced, of successively higher levels, the leading 

idea being that in substituting for a propositional or functional variable of 

•’•The use oi the word "level” here is a departure from the terminology of Russell 
and of Principia Mathematica. In the second-order functional calculi, what we call the 
level of a propositional or functional variable is the same thing that Whitehead and 
Russell call the order. But in general, and especially in connection with the ramified 
functional calculi of higher order, we understand by the level of a functional variable 
what would be called in the terminology of Whitehead and Russell the amount by which 

k °KdCr °f 1116 functional variable exceeds the order of the variable of highest order 
which may stand in any of the argument places (i.e., in any one of the places between 
parentheses following the functional variable). 

We shall not use the word “order" in this connection except in the sense in which we 
speak °; functional calculi of first order, of second order, and so on (a use of the word 
very different from that of Whitehead and Russell). Also we shall use the word "type" 

way *hich differs from the usage of Whitehead and Russell, and which is suited 
rarner to the simple functional calculi than to the ramified functional calculi. Namely— 
as win be explained more fully in Chapter VI—all the functional variables which appear 
n the functional calculi of first (or second) order are said to be of the first type-class 

new functional variables which are introduced in the functional calculus of third 

varUhw ?! t0 !* ?f thf second ‘yPe-class- and so on. a new type-class of functional 
in n * beiDg*ntroduCed in each successive functional calculus of odd order. There is 

*^nm0 °gy no distinction of type among propositional variables, all of them 
variSSL though in the ramified functional calculi there are propositional 
(id Of a lev,els- Llkewise an individual variables are of the same type 
variawL d!f ent ^ from Propositional and functional variables). Two functional 

thTfhS't^ Z** a!ld 1116 0ther *-***■ m ot the same type, if they are both of 
m = « an!i^£'daSS-a?.d m = or lf they are of the same higher type-class and 
one of them W^'Ch may stand in each argument place (inVrder) after 

place ttTotKT “ Variab1' WhiCi may Sta°d “ 
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given level, the wff B which is substituted may contain bound propositional 

and functional variables of lower levels only. Thus the ramified functional 

calculus of second order and second level, F|/2 (in our present formulation of 

it), contains propositional and functional variables of the first level and of 

the second level. Similarly F|/8 contains propositional and functional vari¬ 

ables of three different levels, and so on. The ramified functional calculus of 

second order and level a>, Fjj/ffl, contains all the propositional and functional 

variables of all (finite) levels. 

The primitive bases of these (and other) ramified functional calculi may 

be given simultaneously in the following way.679 

The primitive symbols are first the eight following: 

[=>]-(.) v 
Then there is an infinite list of individual variables, the same as for ¥\: 

x y z xx yx zx x% ... 

Then there are or may be propositional variables of various levels, namely, 

either no propositional variable, or all propositional variables of not more 

than a certain maximum level, or all propositional variables of all levels. 

Explicitly, the symbols admitted as propositional variables are the following, 

where the superscripts indicate the level and where for any particular level 

used the list of variables is infinite: 

Pl q1 rl s1 p\ ... 

P* q1 r* ** Pi 9i ••• 

P* f f» * Pl A ••• 

Then for each n there are or may be n-ary functional variables of various 

levels (n = 1, 2, 3, . . .). Namely, there are either no n-ary functional vari¬ 

ables, or all n-ary functional variables of not more than a certain maximum 

level, or all n-ary functional variables of all levels. The explicit symbo 

admitted as functional variables are as follows, where the first numeral in 

the superscript indicates whether the functional variable is singulary, or 

‘"This formulation should be compared not only with the 

Russell (in the paper cited in footnote 454) and that'^JV^T^iischen Logik, 
with the formulation of Hilbert and Ackermann in r-JLnl of Symbolic Logic, vol. 
first edition (1928), and that of Frederic B. Fitch in The Jou^ ofS^c ^ 

3 (1933). pp. 140-149. AH of these differ from our lr»ver 
not being restricted to what we here call the secondharder F ^ em |n sense 

contains notations and axioms which are t his system is more nearly 
a formulation or partial formulation of arithmetic, so that his sysr 

comparable to our A,/<0 (see below) than to F, . 
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binary, or ternary, etc., and the second numeral in the superscript indicates 

the level: 
fl/l Gm Hm pin G\i' ... 

fU* Gm Hm pm G\12 ... 

fin Gm H1/3 pin G\13 ... 

f>n 
• • 
Gm 

• • 
Hm 

• • 
pin 

• • • • 

cl11 ••• 
fm G2,2 H2'2 pin G\12 ... 

fin G213 H213 pin Gl13 ... 

F3/1, and so on. 

Then finally there may be individual constants or functional constants or 

both—where for each functional constant it must be given what its level is 

and whether it is singulary, binary, ternary, etc. 

The formation rules are the same as for the simple functional calculus of 

second order, Fj, with the understanding that the level of a functional 

variable or functional constant is to be ignored. *In particular, e.g., if f is 

an n-ary functional variable or functional constant, and x1( x2, . . ., xn are 

individual variables or individual constants (or both), then f(x1, x2, . . xn) 

is wf, regardless of the level of f. 

The same abbreviations of wffs and in particular the same definitions are 

used as for Fj. But in D20and D21 the propositional variable s is replaced by 

the propositional variable s1, of the first level. And in D22 and D23 the 

functional variable F1 is replaced by the variable i*1/1, of the first level.580 

As a further abbreviation in writing wffs, the superscripts of the propo¬ 

sitional and functional variables may be omitted ordinarily. In order to make 

this possible, the level which is to be given to a particular variable may be 

specified in words. Or following Priticipia Mathematxca we may write an 

exclamation point after a letter to indicate that it represents a variable which 

is predicative, or of the first level. 

The four rules of inference are the same as for F*. i.e., *500-*503. 

The axioms are given by seven axiom schemata, closely analogous to those 

given above for the predicative functional calculus of second order. Indeed 

the first five axiom schemata are exactly the same as for F|‘—except of 

course that A, B, C are now wffs of the particular ramified functional cal¬ 

culus of second order whose axioms are being given, and in the fourth schema 

p**,IfT^ired’ we ““Sht intr®<luce also notations =, and replacing the variable 
in D22 and D23 by F1'*. Likewise and +,, and so on. 
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a is a variable of any kind belonging to the particular ramified functional 

calculus of second order (subject to the condition that a is not free in A). 

The sixth and seventh axiom schemata are modified as follows: 

(p) A id SgA|, where p is a propositional variable, the bound propositonal 

and functional variables of B are all of level lower than that of p, and the 

free propositional and functional variables of B are of level not higher than 

that of p. 

(f)ADS5*|,1|,,",,*)A> where f is an n-ary functional variable, and 

Xj, x2, ..., xn are distinct individual variables, and the bound proposi¬ 

tional and functional variables of B are all of level lower than that of f, 

and the functional constants and the free propositional and functional 

variables of B are all of level not higher than that of f. 

The ramified second-order functional calculi of various levels are specified 

as follows by means of a maximum level of propositional and functional 

variables and functional constants. F2/r has all the first-level variables and 

may have first-level functional constants, but has no variables or constants 

of higher level (thus it differs only trivially from F*1). Fj* has all the 

propositional and functional variables of first and second levels and may 

have functional constants of these levels, but has no variables or constants 

of higher level; and so on. Fj/<n has all the propositional and functional 

variables of all levels and may have functional constants of any level. 

Of particular interest is the pure ramified functional calculus of second 

order and level (o, F2/<np, having as primitive symbols all the possible kinds of 

variables listed above, and no constants. Also logistic systems obtained from 

Fl,ap by adding one of the axioms of infinity (col)-(co4), with F taken as 

a variable of the first level, or the infinite list of axioms obtained from axiom 

(w) by taking F to be of the first level and G of all possible levels (succes¬ 

sively), or both.581 Also further, logistic systems obtained from F, by 

adding functional constants and postulates containing them. 

-That part of the system of Principia rlSSd 
second-order functional calculus is approximately Q( infinity 
functional calculus of second order and level to, described, and the further 

and the infinite list ofaxioms obtained toma* axioms of reducibility given 
addition (at least for the first edition.otPrtnctft) , nctional variables 0f higher type- 
in §69 below. For the complete system of J* ' ^ded into levels; the axiom of 
class (cf. footnote 678) added, but agai „ '{. .. referred to in footnote 669) 
infinity is restated in a *««»* *»«L^lai toeSioms obtained, as described in 
requiring functional variables of highe ’ multiplicative axioms (equivalent to 
the text, from axiom (w are •"£»****Son) aSdiSl of reducibility with varia- 

—in S69' 
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Of this last kind is the system of ramified second-order arithmetic, A2/® 

which we go on to formulate briefly before concluding this section.582 

The system A*'", in its intended interpretation, probably would not be 
acceptable to the authors of Principia Mathematica. since they require that the 
natural numbers be defined and their properties proved rather than postulated. 
On the other hand it can be thought of as in accord with the program of Weyl in 
Das Kontinuum,M* or with the ideas of Poincar6, both of whom accept the 
elementary methods of arithmetic, including proof by mathematical induction, 
as being (to quote Weyl) ein letzles Fundament des mathematischen Denkens. 

As stated, A2/<u is obtained from F2/<up by adding functional constants as 

undefined terms, and postulates. The functional constants are £ and /7, 

ternary functional constants of the first level, the same as the functional 

constants £ and FI of the systems A0 and A1. The postulates are the first 

twelve postulates of A1 unaltered, and an infinite list of postulates obtained 

from the thirteenth postulate of A1 (the postulate of mathematical induction) 

by taking the function variable F1 to be of all possible levels, successively.581 

A*/<0 may be called, more fully, a formulation of the ramified second-order 

arithmetic of level eo; and ramified second-order arithmetics of lower levels 

may be obtained by specifying a maximum level of propositional and func¬ 

tional variables. For example, the wffs of As/aare the same as the wffs of A2/“ 

which contain no propositional or functional variables of level higher than 

the second; and the postulates of A2/2 are fourteen in number, being the 

same as the postulates of A2/“ which contain no propositional or functional 

variables of level higher than the second. 

The system of predicative second-order arithmetic, A21, is obtained from the 

Pure predicative functional calculus of second order, Fflp, by adding the 

undefined terms and postulates of A1. Thus it differs only trivially from A2/1. 

For A21 and for the various ramified second-order arithmetics, as here 

formulated, including A2/®, the same definitions are used as for the corre¬ 

sponding second-order functional calculi F21, F2/“, etc., except that the def- 

systems A# «yid A1, formulated in §55, remain unaffected by adoption of the 
P°. * view of ramification or division into levels. 

^Compare footnote 635. 

ord^r^H^'iIr* a !°rmulation of ramified arithmetic of second order, and of higher 
the h° dS SVch a system to ** admissible. However, the actual developments of 
be eSnfitif argely ,withm a Predicative second-order arithmetic that would seem to 

t0 ,thC Sy!tem A21 (See b€l°w)- though differing details of 
arithmetic ht ££ th,S must ** extended to a predicative third-order 

appear only £ ^ee^abl^ °f ^ but them to 

firiteU^bv is'ep,aced by in/1 to obtain the first postulate of the in- 
»ist, by fii to obtain the second one. and so on. 
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inition schemata D22 and D23 are discarded, and the notation [a = b] is 

defined rather in the same way as was done for A0 and A1 in §55. The nota¬ 

tions Z0(a) and Z1(a) are also defined in the same way as for A0 and A1. 

EXERCISES 58 

58.°. Prove as a theorem of F,!: 

x = yz> ,y = x 

58.1. Where F is a singulary functional variable of arbitrary level,585 

prove as a theorem of Al/“: 

x = y=. F(x) =>F F{y), 

i.e., written more fully, E(x, z, Zj) Dtz^Z(y, z, x,) = . F(x) zdf F(y). (Use 

the postulates of mathematical induction.) 

58.2. Where F and G are singulary functional variables of different levels, 

show that the following is a theorem of A2/® but not of : 

F(x)z>FF(y) = .G(x) z>cG(y) 

(Suggestion: Consider an interpretation of FJ,<0 according to which the individuals 

are the natural numbers; the values of the propositional variables are t and f, the 
same for all levels; the first-level propositional functions, i.e., the values of the 
first-level functional variables, are those which make no distinction among the 
different individuals, thus only the null class and the universal class, the null 
relation and the universal relation, and so on; the second-level propositional 

functions are those additional propositional functions which make no distinction 
among the different individuals except the distinction of odd and even; the 
third-level propositional functions are those additional propositional functions 
which distinguish the individuals as congruent to 0, 1. 2, or 3 modulo 4; an so 
on In a manner which will now be familiar to the reader, the semantical ar¬ 
gument so obtained can be converted into a syntactical independence proof.) 

59. Axioms of reducibility. 

Because they were unable otherwise to develop classical “^ematics wittta 

their system in the manner which they desired, Russell m 

‘•‘Thus " F” becomes in effect a syntactical ’itetdbhed! 
values; and a theorem schema summarizing an mf . • ^ typical ambiguity. 
This is an instance of what the authors of Prinafn> , At/(D might also be con- 

The infinite list of postulates of mathematical mductoorn ofA . 
veniently summarized in a single postulate schema by means of typ. 

<C°-TSu“uf^l to ho a principal inte^rcration but a special interpretation 

serving the purpose of the particular independence proof. 

“7In the paper cited in footnote 454. 
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Whitehead and Russell in Principia Mathematica, were led to supplement the 

ramified functional calculi by the addition not only of an axiom of infinity and 

multiplicative axioms (as explained in footnote 581) but also of the famous 

axioms of reducibility. The content of the axioms of reducibility is, for a prop¬ 

ositional function of arbitrary level, that there exists a formally equivalent 

propositional function of the first level (the intended interpretation being such 

that the formal equivalence of propositional functions is not alone sufficient to 

render them identical). This has been much criticized,588 in particular on the 

ground that the effect is largely to restore the possibility of impredicative def¬ 

inition which the distinction of levels was designed to eliminate. Indeed, as 

many have urged,1** the true choice would seem to be between the simple 

functional calculi and the ramified functional calculi without axioms of reduci¬ 

bility. It is hard to think of a point of view from which the intermediate position 

represented by the ramified functional calculi with axioms of reducibility would 

appear to be significant. And in the Introduction to the Second Edition of Principia 

Mathematica (1925), Russell in fact recommends abandonment of the axioms of 

reducibility.**° Nevertheless, because of their historical importance, it seems 

desirable to give these axioms here (as far as they fall within the second-order 
functional calculi). 

Syntactically, the axioms of reducibility, intended as axioms to be added 

to F|/", are the following doubly infinite list, where G is always a functional 

variable of the first level, and F is of arbitrary higher level: 

(3G) . F(x) =x G(x) 

(3G) . F(x,y) =xvG(x,y) 

(3G) . F(x, y, z) =z„ G(x, y, z) 

Ifl4_i7iPai?1|KU^r hy, Le°n Chw,stek in Przegl<\d Filozo/iczny, vol. 24 (1921), pp. 
,192ftV n„ lit?. Ackerman, Grundzuge der Theoretischen Logik. first edition 
nn oiofoao ^do f Fraenkel- Etnletlung in die Mengenlehre. third edition (1928), 

X' Qmne in Mind■ ns- voL 45 (1936)- PP- 498-500, and in a paper in 
Tke™'l0*ophy of Al/red North Whitehead (1941), see pp. 151-152. P ^ 

th* p. 'Sjek m paper cited in 1116 Preceding footnote; F. P. Ramsey in a paper in 
°l!heJr0*40** Mathematical Society, ser. 2 vol. 25 (1926), pp. 338-384 

-Sl R^nW r Tht F0Ut^i0nS 0/ and other Logical Essay?(1931) pp. 

cJnkn and l <Ur <1929>- §9‘ 566 also mattered remarks by 
Hans Hahn ,n Erhenntnis. vol. 2 (1931), pp. 73, 97, 145. X 

itY exireiinaS'Jn8^tl0n»tllat ^plaCC COuld ^ pArUy hy 3x10,115 of extensional- 
«2ily Smiv^nt rl^0 h °n> f ^ ram,!,ed hlgker-order functional calculi that for- 
Sl f(x?tnoteP^ro^sitlonal functions of the same type and the same level are identi- 

Tl)L0/ constructive types, a paper in the Annates de la Sociiti 

whid?Chj£fit‘ t*?***9?’ 2 (1924)> PP- 9~48- and voi- 3 (1925), pp. 92-141 in 
the axioms^f k ?kCK iWhat RusseU describes as the heroic course of dispensing with 
a logistic tr^tSUt‘b)Ity *Klth°U* adoPtin8 any substitute, thus undertaking to base 
the4 lxion^ * °f mathematics on the system of Principia Mathematica without 
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(There are also axioms of similar form intended to be added to the higher 

order functional calculi.) 

These axioms are not all independent, since those which contain singulary 

functional variables can be proved by using those which contain binary 

functional variables, and so on down the list. Also among those which 

contain n-ary functional variables (with fixed n), it is obvious that one in 

which F is of lower level can be proved by using one of those in which F is 

of higher level. 

EXERCISES 59 

59.O. In the logistic system ¥llcoM, obtained by adding the axioms of 

reducibility to F^®, prove 

F{x) =>F F(y) = . G(x) zdg G(y), 

where F and G are singulary functional variables of different levels. 

59.1. In F|/<D (thus without using axioms of reducibility), prove 

(3 q).p = q, 

where p and q are propositional variables of different levels. 

59.2. In the logistic system obtained by adding to F|/o> the axioms of 

reducibility containing binary functional variables, prove as theorems the 

axioms of reducibility containing singulary functional variables. 

59.3. In the logistic system obtained by adding to F*/a> the axiom 

schema of footnote 555, f and g being taken as predicative functional 

variables, show that the axioms of reducibility are theorems. Discuss the 

question of prescribing the levels of f and g in this axiom schema so as to 

avoid obtaining from it any theorem (3G). F{x) =s G(x) in which G is 0 

lower level than F. 



Index of Dennidons 

Tins —cen moirces reoererces to al cassias an wrier. a new term is 

incttdacec or ie n earns :r cssce of a term is exris_z.ee. whether bv 

iern:tn~n or ocberw-.se. 3cci. tie terms ose-i m. tie me^ >-t,- 

tie characters nsec m tie mimccs :erect oamroayes are oc v»rec enter eng 

Otters nsec as ~-~an.ibi.es. ante rarer.tieses. brackets, commas ami. aiso 

retererces ta tenmnoicgT whcch. os erotic v»c bv others bet roc accccec in 

tins beck. Tie rrmberec ie fritters DL-C'*i5 pertanmg ta tie abject 

-sneaases are indexed arccrtmg t: meir ranters. at tie tracer rises m 
airnabettc a me jer D . Ami iesmtamers tse-i far ra ems 

ices^x systems, o-crrssmg of a raritsi. Letter with. surersemes or rabserres 
w • • • 

:r i«:cb. ire debit iec d die deex iGc each, i: :is ir:cer place d idcobenc 
crier. 

^ ^der ±i lie idiiabeiic nm^nei:: lie irUcwm^ srerml riles 

325 iiicctec. Greek jeners ire neaiec is ccizirg 21 id cohere crier icier 

iG die Cdir’sp lectors, nc ire irnrgec incnc icernseives in lieir :wi 

oxcmecc crier, Armic mzends ire ireaiec is aiming icier ccci Fr»^<n 

iHi- (^r^ek leriers. icc ire icrmaec idcra ihemselves m crier or dcr^asidc 

nie (at lie ccrresccccrnc zdnbers — lins 0 irsi. I -n+r i 

^ sc end Scemi cianctss (inciurm inverted triers neaiei is seem! 

C®3S3C2HS ^ irnricec in m iciiincv :rier icier Rr^-sr leriers. Greek 

*■ ****- -Arabic iriffis. la ire dsddcdec between capital me *r?;*.T! 

'• —ctam amt ttaic Letters, aracuenred ami accented Letters no amertion. 

is arouianly rate on a-pr.abe tintg mm where two entries would otherwise 

mmcnie m tie aighnbetoc trier tie trie is bedewed to put capital letters 

oefiore ansi emers. ami tier, to tut -reran Letters cert re italic Letters, 

atic tier, ta tut unaccented Letters before accentec Letters. Parertieses. 

tae oypner. tie scinins. exriamarxc term comma. ami ocier tunctsnor 

^anks are ale onfinanly ignored in. dpcabetmog. bet wiere in spite of 

il preceding tries two entries wouic itierwise ccnmde m the alrhabecc 

^ lackmg tie tan—tieses .or ocier punctnarcn 'mark is 
disced ceinre tie ocier entry. Finally account is nrr ._-f superscripts 

^t szcscmpcs only m oases an winch. in spite of al preceding tries twe 

J :Ba* would otherwise orimnde in aipcabecc crier: in such oases. 



358 INDEX OF DEFINITIONS 

the entries are arranged in the alphabetic order of their superscripts; or 

if the superscripts are identical, or non-existent, the entries are arranged 

in the alphabetic order of their subscripts. 

The references given in the index are by section number (indicated by 

or by the number of an axiom, rule of inference, theorem, or meta- 

theorem (indicated by “f”, or “**” forming part of the number); 

or by numbered footnote (indicated by "n.”); or by numbered exercise 

(indicated by the occurrence of a period as part of the number). Footnote 

152 of §10 (see page 70) should be consulted for an explanation of the 

system of numbering which is used in the text. And it should be noticed 

in particular how the number of any section indicates in what chapter it 

will be found, and the number of any axiom, rule, theorem, or metatheorem 

indicates in what section it will be found. As explained in footnote 152, 

exercises are placed immediately after the section that is indicated by the 

number of the exercise — so that, e.g., 46.0 is the first exercise in the 

collection of exercises (called “Exercises 46”) which follow §46, and 46.19 

is the twentieth exercise in the same collection. 

In searching for a reference from the index, page numbers may be 

ignored, and there may be used instead the numbers of chapters, sections, 

and exercise collections which are given at the top of the pages of the text. 

When the reference is to a footnote, observe that footnotes 1-149 are in 

the Introduction and that beyond that the number of the footnote indicates 

directly in what chapter it falls, numbers in the one hundreds being for 

footnotes in Chapter I, those in the two hundreds for footnotes in Chapter II, 

and so on. 

(A/): 65.18. 

(A0): §55. 

(Ax): §55. 
(Aa): §55. See Peano’s postulates. 

• Q 01 • 

Av Alt..., A„ b B: §13, §36. n. 343. 

Abbreviative definition: n. 168. 

Absolute completeness: §18. 

Absolute consistency: §17. 

Absolutism: n. 635. 

Absorption, laws of: 16.8. 

Abstraction: §03. 

Abstraction operator: §06. 

A7: 55.18. 

A": §55. 

A0: §55, n. 582. See elementary 

arithmetic, Hilbert arithmetic. 

A1: §65, n. 582. See elementary num¬ 

ber theory, Hilbert arithmetic. 

A1: §65. See Peano’s postulates. 

Aal: §58. 

A>/tD: §58, n. 583, n. 584, n. 585. 

A2/1: §58. 

A*/s: §68. 

A3: §55. 

A4: §55. 
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Abstraktion: n. 112. 

afep: §53. 

Affirmation of the consequent, law 

of: f 102, |202. 

afp: §32. 

Algebra of logic: n. 125, §29. 

Algorithm: n. 118. 

Algorithm* logique: n. 125. 

Alphabetic change of bound (in¬ 

dividual) variable, rule of: *350, 

*402, *502. 

Alphabetic change of bound prop¬ 

ositional and functional variables, 

rule of: *515. 

Alphabetic order: §10, §20, §30. 

Alternation: §05. 

Analysis: n. 520. 

Antecedent: §10, n. 162, §20. §30. 

Apparent variable: n. 28, n. 575. 

Applied functional calculus of first 

order: §30. 

Applied functional calculus of first 

order with equality: §48. 

Applied functional calculus of second 

order: §50. 

Argument: §03. 

Argument place: n. 578. 

Assert (a proposition): §04, n. 72. 

Assert (a propositional form): §06, 

n. 106, n. 107. 

Assert (a sentence): §04, n. 72. 

Assertion, law of: 12.7. 

Assertion sign: n. 65. 

Associated form (of a connective): 
§05. 

Associated formula of the extended 

propositional calculus: §53. 

Associated formula of the propo¬ 

sitional calculus: §32. 

Associated function (of a connec¬ 

tive): §05. 

Associated function (of a constant): 

§03. 

Associated function (of a form): §03. 

Associated m-ary functions of an 

n-ary form: §03. 

Associated natural number (of :£„): 

§54. 

Associated propositional function: 

§S4. 

Associated quantifier-free formula: 

§32. 

Associative law of multiplication: 

55.8. 

Associative law’s: see complete as¬ 

sociative laws. 

Autonomy: §08. n. 156. 

Axiom: §07, n. 128. 

Axiom of infinity: §57, n. 559, 

n. 560. 

Axiom of well-ordering of the in¬ 

dividuals: §56. 

Axiom schema: §27, §30. 

Axiom (w): §56. 

Axiomatic method: §07, n. 126, n. 

127. 

Axiomatic set theory: n. 75. n. 129, 

end of §09. 

-Axioms of choice: §56, n. 555. 

Axioms of extensionality: n. 590. 

-Axioms of reducibility: §59. 

Basic instance: §30. 

Bear (a relation): §04. 

Bedeuten: n. 7. 

Biconditional: §05. 

Binary connective: §05. 

Binary form: §02. 

Binary function: §03. 
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Binary functional calculus of first 

order: §30. 

Binary relation: n. 78. 

Boolean algebra: 15.8. 

Boolean ring: 15.6, n. 185, 15.7. 

Boole’s law of development: 28.1(5), 

28.1(6), n. 237. 

Bound occurrence of a variable: 

§06, n. 117, §30. 38.6. 

Bound variable: n. 28, n. 36, n. 52, 

n. 64, §06, n. 96, §30, §50. 

Brackets: §05, §10, n. 156. 

By P: §31, n. 319, §51. 

B|: §32 (proof of **323). 

Bt: §32 (proof of **323). 

C: n. 91, 12.2. 

Calculus of inference: n. 125. 

Calculus of logic: n. 125. 

Calculus ratiocinator: n. 125. 

Categorical proposition: 46.22. 

Categorical syllogism: 46.22, n. 441. 

Categorical system of postulates: §55. 

Characteristic function: 43.2. 

Characteristic (system of truth- 

tables): n. 217. 

Choice, axioms of: §56, n. 555. 

Class: §04. 

Class concept: n. 17, §04. 

Closed wff: §50. 

Closure: §43, §54. 

Coincide in extension: §04. 

Collective name: n. 6. 

Combinatory logic: n. 100. 

Common name: n. 4, n. 6. 

Commutation, law of: 12.7. 

Commutative law of equality: §48, 

f521. 
Commutative law of (material) e- 

quivalence: fl55. 

Commutative law of multiplica¬ 

tion: 55.9. 

Commutative laws: see complete 

commutative laws. 

Compatibility: n. 2. 

Complete as to consequences: §55. 

Complete as to provability: §55. 

Complete associative law of (ma¬ 

terial) equivalence: 26.0. 

Complete associative laws: compare 

also 15.5, 15.7. 

Complete commutative law of equal¬ 

ity: f523. 

Complete commutative law of (ma¬ 

terial) equivalence: 15.0(7), 26.0. 

Complete commutative laws: com¬ 

pare also 15.5, 15.7. 

Complete distributive law of con¬ 

junction over disjunction: 15.8. 

Complete distributive law of disjunc¬ 

tion over conjunction: 15.8. 

Complete distributive laws: compare 

also 15.5, 15.7. 

Complete in the sense of Post: §18. 

Complete law of double negation: 

n. 163, fl54- 
Complete self-distributive law of 

(material) implication: n. 163. 

Complete system of primitive con¬ 

nectives: §24. 

Complete with respect to a given 

transformation: §18. 

Completeness of a logistic system. 

§18, §32, §54. 

Composition, law of: 15.0(5). 

Concept: §01, n. 17. 

Concept of: §01, n. 21. 

Conclusion: §07, n. 162. 

Concurrent constants: §02. 
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Concurrent forms: §02. 

Concurrent to a constant: §02. 

Conditional: §05. 

Conditioned disjunction: §24. 

Confirmation: n. 2. 

Conjunction: §05, n. 227, n. 232. 

Conjunctive normal form: n. 299. 

Connectives: n. 64, §05, n. 112. 

Connotation: n. 14. 

Connote: n. 16. 

Consequence: §55. 

Consequent: §10, n. 162, §20, §30. 

Consistency of a logistic system: §17. 

Consistent as to consequences: §55. 

Consistent as to provability: §55. 

Consistent class of wffs: §45, §54. 

Consistent in the sense of Post: §17. 

Consistent with a class of wffs: §45, 

§54. 

Consistent with respect to a given 

transformation: §17. 

Constant: n. 6, §02, n. 31, n. 112, 

n. 117, §10, §30, n. 460, §50. 

Constant function: §03. 

Contextual definition: §55, n. 528. 

Continuity: n. 102. 

Contradiction: §15, §23. 

Contradiction, law of: 15.0(9). 26.13. 

Contraposition, converse law of: 
f204. 

Contraposition, law of: 15.0(6), 

f223, 26.13. 

Converse: §10, §30. 

Converse domain: n. 517. 

Converse implication: §05. 

Converse law of contraposition: 
1204. 

Converse law of double negation: 

n. 163, f222, 26.13. 

Converse non-implication: §05. 

Converse of a function: §03. 

Converse self-distributive law of 

(material) implication: n. 163. 

D: n. 91. 

Decision problem: §15, n. 183, n. 184, 

§46. 

Decision problem, reduction of: see 

reduction. 

Decision problem, solution in a 

special case: n. 421. 

Decision problem for provability: 

§15, n. 184. 

Decision problem for satisfiability: 

§46. 

Decision problem for validity: §46. 

Decision procedure: §15. 

Declarative sentence: §04. 

Deducibility, problem: n. 184. 

Deduction theorem: *130, n. 181, 

§29, n. 332, *360, *516. 

Definiendum: §11. 

Definiens: §11. 

Definition: n. 49, §11, n. 167, n. 168, 

n. 305. 

Definition schema: §11. 

Definitionally equivalent: beginning 

of Chap. III. 

De Morgan, laws of: 15.8, n. 188. 

Denial of the antecedent, law of: 

1123, f220, §26. 

Denotation: §01. 

Denotation value: n. 27. 

Denote: §01, n. 6, n. 7, n. 148. 

Denote in the syntactical sense: 

n. 143. 

Derived rule of inference: §12. 

Derived semantical rule: n. 168. 

Description operator: §06. 
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Descriptions (Russell's contextual 

definition): n. 546. 

Designate: n. 20. 

Designated truth-value: §19. 

Development, law of: 28.1 (5), 28.1 (6). 

Dilemma: 15.9, n. 189, n. 190. 

Disjunction: §05, n. 227. 

Disjunctive normal form: n. 299. 

Disjunctive syllogism: 15.9, n. 189, 

n. 190, n. 191. 

Disjunctively valid: 45.5. 

Disproof: n. 2. 

Distributive laws: su complete 

distributive laws. 

Doctrinal function: n. 529, n. 537. 

Domain (of a relation): n. 517. 

Domain of individuals: §43. 

Double negation, complete law of: 

n. 163, fl54. 

Double negation, converse law of: 

n. 163, |222, 26.13. 

Double negation, law of: fl04, n. 

163, f221. 

Driickt aus: n. 16. 

Dual: §16, §37, 48.11, §51, n. 501. 

Dual of a metatheorem: n. 354. 

Dual of a theorem schema: §37. 

Duality, principle of: *161, *372, 

48.11, 55.0. 

Dl, D2, D3, D4, D5, D6, D7. D8, 

D9, D10, Dll: §11. 

D12: §24. 

D13, D14, D15, D16, D17: §30. 

D18, D19: §48. 

D20, D21: §50. 

D22, D23: §52. 

D24: §55. 

E: §48. 

t: 48.0. 

£: §48. 

E: n. 91. 

Effectiveness: §07, n. 119, §12, n. 

183, n. 535. 

Elementary arithmetic: §55, n. 522. 

Elementary number theory: §55, 

n. 520, n. 522. 

Elementary part: §30, 38.13, §44, 

n. 423, §50. 

Elementary syntax: §08. 

Elimination problem: 52.6. 

Empty class: §04. 

Equality: n. 43, §48, §52, n. 502. 

Equality by definition: n. 168. 

Equivalence: §05, n. 227. 

Equivalence of logistic systems: §23, 

n. 202. 

Erweiterter Aussagenkalkiil: n. 224. 

Excluded middle, law of: 15.0(10). 

Excluded middle, weak law of: 26.13. 

Exclusive disjunction: §05. 

Existential closure: §43, §54. 

Existential import: n. 441. 

Existential quantifier: §06. 

Expansion of a wff with respect to 

negation: §23. 

Explicative definition: n. 168. 

Exportation, law of: 15.0(3). 

Express: §01, n. 16. 

Extended propositional calculus: 

§28. 
Extensionality, axioms of: n. 590. 

External to an occurrence of a 

quantifier: §39. 

F7: §48. 

F7p: §48. 

F7p: §48. 

Fx: beginning of Chap. HI. 

Fj: 39.11. 
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Fjb: 39.10. 

Fjh: 39.12. 

Fj.: 38.9. 

Fu: 30.4. 

Fj*: §55. 

F11*: §30. 

Fu: 38.6. 

F2Up: 41.2. 

Flm: 38.10. 

Fjm: 38.11. 

Fj,m: §40. 

Flp: §30. 

F’p: 46.24. 

Fjp: §40. 

F1'1: §30. 

Fw: §30. 

FJ: §50. 

FJ': §58. 

FJ": §50. 

Fj": §58. 

FJp: §50. 

F*lp: §58. 

F*p(w): §56. 

FJ-; §58. 

FJ/wp: §58. 

Fj*w: 59.0. 

FJ*x: beginning of Chap. V, §50. 

FJ1: §68. 

F***: beginning of Chap. V, §50. 

FJ1: §68. 

* §06. §10. 

/: §10. §28. §50(D20). 

False (proposition): §04. 

False (sentence): s&etrue (sentence). 

Falsehood (i.e., the truth-value 

falsehood): §04. 

Falsifying assignment: §44. 

Falsifying system of truth-values: 
§46. 

Final bracket: §14. 

First level: §58, n. 578. 

First type-class: n. 578. 

First-order arithmetic: §55. 

Form: §00, §07, n. 124. 

Form: §02, n. 25. n. 26, n. 117. 

Formal axiomatic method: §07. 

Formal equivalence: §06, n. 104, 

n. 305. 

Formal implication: §06, n. 104, 

n. 305. 

Formal logic: §00. 

Formalized language: §00. 

Formation rules: §07. 

Formula: §07. 

Formulations of the propositional 

calculus: beginning of Chap. I, 

§25. 

Free occurrence of a variable: §06, 

n. 117, §30. 38.6. 

Free variable: §02, n. 28, n. 36, n. 52, 

§30, §50. 

Full conjunctive normal form: §29, 

n. 299, 39.8. 

Full disjunctive normal form: 24.9, 

n. 237, §29, n. 299, 39.3. 

Full many-valued propositional cal¬ 

culus: §29. 

Full propositional calculus: §29. 

Function: n. 26, §03, n. 39. 

Function concept: §03. 

Function from ... to: §03. 

Function in extension: §03. 

Function of: §03. 

Function of two arguments: §03. 

Function of two variables: n. 42. 

Functional abstraction: §03. 

Functional calculus of first order: 

beginning of Chap. III. 
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Functional calculus of first order 

with equality: §48. 

Functional calculus of second order: 

beginning of Chap. V. 

Functional constant: §05, §30. 

Functional variable: §30. 

Gedanke: §04. 

General name: n. 4, n. 6. 

Generalization, rule of: *301, *401, 

*501. 

Generalized upon: §30. 

Godel’s completeness theorem: §44, 

**440. 

Henkin's completeness theorem: 

§54, **546. 

Higher protothetic: n. 229. 

Hilbert arithmetic: n. 524. 

Hold between: §04. 

Hold for (an argument): §04. 

Hypothetical syllogism: 15.9. 

/: §48. 

(ID): §55. 

id: §55(D24), n. 543. 

Idempotent laws: n. 186. 

Identity: see equality. 

If. . . then: n. 89. 

Immediate inference: n. 115. 

Immediately infer: §07. 

Imperative logic: n. 63. 

Implication: §05. 

Implicational propositional calculus: 

§26. 

Implicative normal form: 15.4. 

Implies: n. 89. 

Importation, law of: 15.0(4). 

Impredicative definition: §58, n. 573, 

n. 574. 

Improper symbol: §05, n. 117, § 10, 

§30. 

Inclusive disjunction: §05. 

Inconsistent class of wffs: §45, §54. 

Inconsistent with a class of wffs: 

§45, §54. 

Independence example: §55. 

Independence (of axioms and prim¬ 

itive rules of a logistic system): 

§19, n. 195, n. 468. 

Independence (of postulates): §55. 

Independent: §19. 

Independent as to consequences: §55. 

Independent as to provability: §55. 

Independent connective: §24. 

Indirect proof, law of: 26.11. 

Individual constant: §30. 

Individual variable: §30. 

Individuals: §30, n. 309. 

Infin ax: n. 559, n. 581. 

Infinity, axiom of: §57, n. 559, n. 560. 

Informal axiomatic method: §07. 

Initial bracket: §14. 

Initially placed: §39. 

Instance (of a theorem schema): §33. 

Integral domain: §55. 

Intensional propositional variable: 

§04. 

Interpretation (of a logistic system): 

§07, n. 199. 

Interpretation (of a mathematical 

theory): n. 636. 

Interpretation of F^: §54. 

Interrogative logic: n. 63. 

Intertypical variables: n. 87. 

Intuitionism: see mathematical in- 

tuitionism. 

Intuitionistic functional calculus of 

first order: 38.6. 
Intuitionistic propositional calculus: 

§26. 
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Isomorphic: §55. 

Judgment: §04. 

K: n. 91. 
Language: §07, n. Ill, n. 116. 

Law of affirmation of the con¬ 

sequent: f 102, f202. 

Law of assertion: 12.7. 

Law of commutation: 12.7 

Law of composition: 15.0(5). 

Law of contradiction: 15.0(9), 26.13. 

Law of contraposition: 15.0(6), J223, 

26.13. 

Law of denial of the antecedent: 
1123, f220, §26. 

Law of double negation: fl04, n. 163, 
|221. 

Law of excluded middle: 15.0(10). 

Law of exportation: 15.0(3). 

Law of importation: 15.0(4). 

Law of indirect proof: 26.11. 

Law of reductio ad absurdum: §26, 
26.13. 

Law of triple negation: 26.13. 

Laws of absorption: 15.8. 

Laws of De Morgan: 15.8, n. 188. 
Laws of tautology: n. 186. 

Leading principle: 15.9(1), 46.22. 
Level: n. 578. 

Lexicographic order: §44, n. 410. 
LK: n. 365, n. 366. 
Logic: §00. 

Logical axioms: §07. 

Logical consequence: n. 533. 
Logical form: n. 26, n. 124. 

Logical primitive symbols: §07. 
Logical syntax: §08. 

Logikkalkul: n. 125. 

Logique algorithmiquc: n. 125. 
Logische Funktion: n. 458. 

Logischer Calcul: n. 125. 

Logistic: §07, n. 125. 

Logistic method: §07. 

Logistic system: §07. 

Lowenheim’s theorem: **450. 

Major premiss: §10, n. 162, §30. 
Many-one: n. 556. 

Many-sorted functional calculus (of 

first or higher order): 55.24. 

Many-valued function: n. 41. 

Many-valued propositional calculus: 

§19. 

m-ary: see also n-ary. 

m-ary functional abstraction: §03. 

m-ary functional calculus of first 

order: §40. 

m-ary-n-ary operator: §06. 

Mate of a bracket: §11. 

Material equivalence: §05. 

Material implication: §05, n. 188. 

Material non-equivalence: §05. 

Material non-implication: §05. 

Mathematical intuitionism: §26, n. 

183, n. 535. 

Mathematical induction, postulate (s) 
of: §55. 

Mathematical logic: §07, n. 125. 
Matrix: §39. 

Matter. §00. §07. 

Maximal consistent class of closed 
wffs: §54. 

Maximal consistent class of wffs: 
§45. 

Mean: n. 7. 

Meaning: n. 7, n. 13, n. 20 

Meaningfulness: n. 120. 
Members of a class: §04. 

Mention of a word: §08. 

Meta-language: §07. 
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Metamathematics: n. 110, n. 139. 

Metatheorem: §09. 

Minimal functional calculus of first 

order: 38.10, 38.11. 

Minimal propositional calculus: §26, 

n. 210. 

Minimalkalkiil: n. 210. 

Minor premiss: §10, n. 162, §30. 

Modal logic: n. 2. 

Model: n.451, §55. 

Modus ponendo tollens: 15.9. 

Modus ponens: §10, n. 162, 15.9. 

Modus Ponens, rule of: *100, *200, 

*300, *400, *500. 

Modus tollendo ponens’. 15.9. 

Modus tollens: 15.9. 

Multiplicative axioms: n. 581. 

N: n. 91. 

Name: §01, n. 4, n. 7. 

Name of: §01. 

Name relation: §01, n. 8. 

n-ary: see also m-ary. 

n-ary connective: §05. 

n-ary form: §02, §30, §50. 

n-ary function: §03. 

n-ary functional calculus of second 

order: §50. 

Natural number: §30, n. 521. 

Negation: §05, n. 227. 

Non-assertive use of a sentence: 

n. 65. 

Non-conjunction: §05, n. 207. 

Non-disjunction: §05. 

Non-equivalence: §05. 

Non-implication: §05. 

Non-normal interpretation: 19.10, 

n. 199. 

Non-vacuous occurrence of a quan¬ 

tifier: §39. 

Normal form: see conjunctive normal 

form, disjunctive normal form, 

full conjunctive normal form, full 

disjunctive normal form, impli¬ 

cative normal form, normal form 

(with respect to conditioned dis¬ 

junction), prenex normal form, 

prenex-disjunctive normal form, 

Skolem normal form, Skolem 

normal form for satisfiability. 

Normal form (with respect to con¬ 

ditioned disjunction): 24.10. 

Normal interpretation: 19.10, n. 199. 

Normal system of domains: §54,54.3. 

nth-order arithmetic: §55. 

Null class: §04, n. 77. 

Null formula: §10. 

Object language: §07. 

Oblique use of a name: §01. 

Occurrence as a P-constituent: §46. 

Occurrence as a truth-functional 

constituent: §46. 

Of the first level: §58. 

One-many: n. 656. 

One-to-one correspondence: n. 564. 

One-to-one relation: n. 556. 

One-valued singulary function: §03. 

Operand: §05, §06. 

Operation: n. 112. 

Operator: n. 64, §06, n. 112. 

Operator variables: §06. 

Optative logic: n. 63. 

Order: n. 578. 

Ordered pair: n. 88. 

Ordinary use of a name: §01. 

Organic (axiom): §25. 

Ostensive definition: n. 168. 

P: §27. See also by P, use P. 

PB: §25- 
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Pp: 23.6. 

PG: §25. 

PH: §26, §29. 

PH.: n. 267. 

P,: 29.4. 

PL: §26. 

Pt: 23.7. 

P,: 23.8. 

Pu: §27. 

PN: §25. 

Pn: §25. 

PR: §25. 

Pr: §29. 

Ps: 23.9. 

Pw: 12.7. 

Pw: §25. 

Pr: 26.14. 

P^: §29, 29.2. 

P4: §26. 

Px: §10. 

PJL: 12.2. 
P,: §20. 

PtL- 23.0. 

Pf: 26.3(2). 

K’. 26.0. 

P^: 26.3(1). 

PB/: 26.4. 

PEN: 26.4. 

Pb: 18.3. 

P[: 18.4. 

P*s: §26. 

P*w: 26.19. 

Pi: 26.18. 

PrK: §29. 

Pj: 26.19. 

P“: 26.21. 

P?: §26. 

PP: §26, §29. 

19-6, §26, §29. 

Parentheses: §05, n. 81, n. 82. 

Parenthesis-free notation of Luka¬ 

siewicz: n. 91, 12.2. 

Parity (of an occurrence of an elemen¬ 

tary part): n. 508. 

Partial order: 55.22. 

P-constituent: §46. 

Peano’s postulates: §55, n. 525. 

Pegasus: n. 18. 

Peirce’s law: 12.6, n. 187. 

Perfect number: n. 317. 

Personal name: n. 18. 

Platonism: n. 535. 

Positive implicational propositional 

calculus: §26, §29. 

Positive propositional calculus: §26, 

§29. 

Postulate: §07, n. 128, §55. 

Postulates as added axioms of a 

logistic system: §55. 

Postulates as propositional func¬ 

tions: §55, n. 529. 

Postulate (s) of mathematical induc¬ 

tion: §55. 

Pradikat: §49, n. 458. 

Pradikatcnkalkiil: §49. 

Pradikatensymbol: n. 458. 

Precede: 55.22. 

Predicate: §49, n. 458. 

Predicative: §58. 

Predicative functional calculus of 

second order: §58. 

Predicative second-order arithmetic: 

§58. 

Predicative third-order arithmetic: 

n. 583. 

Predicative variables: §58. 

Prefix: §39. 

Premiss: n. 3, §07, n. 162. 
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Prenex normal form: §39. 

Prenex-disjunctive normal form: 

39.5. 

Primitive basis: §07, n. 117. 

Primitive constant: n. 117, §10. 

Primitive proper name: §01. 

Primitive semantical rule: n. 168. 

Primitive symbols: §07. 

Principal dual: §16, §37. 

Principal implication sign: §10, §20, 

§30. 

Principal interpretation: §07. 

Principle of duality: *161, *372, 

48.11, 55.0. 

Proof: §07, n. 121, §10, n. 164. 

Proof from hypotheses: §13, §36, §51. 

Proper name: §01, n. 4, n. 6, n. 10, 

n. 18. 

Proper subclass: n. 564. 

Proper symbol: §05, n. 117, §10. 

Property: §04. 

Propositio mentalis: §04. 

Proposition: §04, n. 68, n. 69. 

Propositional calculus: beginning of 

Chap. I, §29. 

Propositional calculus with quan¬ 

tifiers: n. 229. 

Propositional form: §04, n. 117, §10, 

§30, §50. 

Propositional function: §04, n. 74. 

Propositional variable: §04, n. 64, 

§30. 

Protothetic: §28. 

Pure functional calculus of first or¬ 

der: §30. 

Pure functional calculus of first or¬ 

der with equality: §48. 

Pure functional calculus of second 

order: §50. 

Pure predicative functional calculus 

of second order: §58. 

Pure ramified functional calculus of 

second order and level co: §58. 

Purely designative occurrence: n. 20. 

Quantification: §06, §49. 

Quantifier: n. 64, §06, §49. 

Quantifier-free: §32. 

Quotation marks: §08, n. 136. 

R: n. 91. 

Ramified functional calculi of second 

order: §58. 

Ramified functional calculus of 

second order and level co: §58. 

Ramified second-order arithmetic: 

§58. 

Ramified second-order arithmetic of 

level co: §58. 

Range of a class: §04. 

Range of a function: §03. 

Range of a variable: §02, §43. 

Range of arguments of a function: 

§03. 

Range of values of a function: §03. 

Range-members of a class: §04. 

Real definition: n. 168. 

Real variable: n. 28. 

Recursion equations: n. 526. 

Reducibility, axioms of: §59. 

Reductio ad absurdum, special law 

of: §26. 

Reductio ad absurdum, law of: §26. 

Reduction class: §47. 

Reduction of the decision problem: 

§47. 

Reduction of the decision problem 

for satisfiability: §47. 

Reduction of the decision problem 

for validity: §47. 
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Reflexive law of equality: §48, |520. 

Reflexive law of (material) impli¬ 

cation: fl20, f211. 

Related rows: n. 439. 

Relation: §04. 

Relation concept: §04. 

Relation in extension: §04. 

Relation in intension: §04. 

Relative consistency: §17. 

Relative product: n. 518. 

Relevant value (of a form used as 

operand of a connective): §05. 

Representative of a wff in §23. 

Representing form: §55. 

Resultant (of a wff of F|): 52.6. 

Row-pair: n. 440. 

Rule of alphabetic change of bound 

(individual) variable: *350, *402, 

*502. 

Rule of alphabetic change of bound 

propositional and functional var¬ 

iables: *515. 

Rule of generalization: *301, *401, 
*501. 

Rule of inference: §07. 

Rule of modus ponens: *100, *200, 

*300, *400, *500. 

Rule of procedure: §07. 

Rule of substitution for individual 

variables: *351, *403, *503. 

Rule of substitution for n-ary func¬ 

tional variables: *352n, *404„ 
*510„. 

Rule of substitution for propositional 

variables: *3520, *4040, *5100. 

Rule of substitution (in the propo¬ 

sitional calculus): *101, *201. 

Rule of substitutivity of equality: 
*529. 

Rule of substitutivity of (material) 

equivalence: *159, *342, *513. 

Rules of definition: n. 168. 

S: §10. §12, §30. 

S: §54. 

S„: §45. 

S„: §45. 

S: §30. 

S: §35. 

S: §55. 

Satisfiable: §43, n. 407, §54. 

Satisfiable in a domain §43, §54. 

Satisfiable with respect to a system 

of domains: §54. 

Satisfied by (a value of a variable): 

§04. 

Satisfied by (an argument): §04. 

Satisfy (a propositional form): §04. 

Schema of proof: §33. 

Scope: §39. 

Secondarily satisfiable: §54. 

Secondarily valid: §54. 

Secondary interpretation of FjP: §54. 

Second type-class: n. 578. 

Self-distributive law of (material) 

implication: |103, n. 163, f203. 

Self-dual, §16, §37. 

Semantical decision problem: §15, 

§46. 

Semantical rules: §07, n. 168. 

Semantical theorem: §09. 

Semantics: §09, n. 140. 

Sense: §01, n. 13, n. 37. 

Sense of a sentence: §04. 

Sense value: n. 27. 

Sense-concurrent: n. 30. 

Sentence: §04, n. 117, §10, §30, 

39.10, §50. 

Sentence connective: §05. 
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Sentential calculus: n. 252. 

Sequenzen: §29, n. 295, 39.11. 

Set: §04. 

sfp: n. 318. 

Sheffer’s stroke: §05, n. 207. 

Simple applied functional calculus 

of first order: §30. 

Simple applied functional calculus 

of first order with equality: §48. 

Simple calculus of equality: §48. 

Simple functional calculus of second 

order: beginning of Chap. V, §58. 

Simple operator: §06. 

Simple order: 55.22. 

Simultaneous substitution: §12. 

Simultaneously satisfiable (class of 

wffs): §45, n. 415, §54. 

Simultaneously satisfiable in a do¬ 

main: §45, §54. 

Simultaneously satisfiable with re¬ 

spect to a system of domains: §54. 

Single-row: n. 440. 

Singular name: n. 4. 

Singulary: n. 29. 

Singulary associated formula of the 

propositional calculus: n. 318. 

Singulary connective: §05. 

Singulary form: §02. 

Singulary function: §03. 

Singulary functional abstraction op¬ 

erator: §06. 

Singulary functional calculus of 

first order: §30. 

Singulary-singulary operator: §06. 

Sinn: n. 13, n. 14. 

Skolem normal form: §42. 

Skolem normal form for satisfiabili¬ 

ty: §43. 

Skolem-Lowenheim theorem: **455. 

Solution of the decision problem in 

a special case: n. 421. 

Sound interpretation: §07, n. 173, 

§19. 

Sound language: §07. 

Special law of reductio ad absurdum: 

§26. 

Special principle of duality for (ma¬ 

terial) equivalences: *165, *374. 

Special principle of duality for (ma¬ 

terial) implications: *164, *373. 

Specialized system of primitive con¬ 

nectives: 24.7. 

Stand in (a relation): §04. 

Subclass: n. 564. 

Subrelation: n. 556. 

Substitution for individual variables, 

rule of: *351, *403, *503. 

Substitution for n-ary functional 

variables, rule of: *352„, *404fl, 

§49, n. 461, *510„. 

Substitution for propositional var¬ 

iables, rule of: *3520, *4040, *5100. 

Substitution (in the propositional 

calculus), rule of: *101, *201, §29. 

Substitution instance: §31, §51. 

Substitutivity of equality, rule of: 

*529. 

Substitutivity of (material) equiva¬ 

lence, rule of: *159, *342, *513. 

Successor relation: 48.23, §55. 

Supposttio formalis: n. 134. 

Suppositio materialis: n. 134. 

Syllogism: 15.9, n. 189, n. 190, n. 

191, 46.22, n. 441. 

Symbolic logic: §07, n. 125. 

Symmetric binary form: §03, n. 56. 

Symmetric function: §03. 

Syncategorematic: §05. 
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Synonymous: §01. 

Syntactical constant: §08, n. 133. 

Syntactical theorem: §08. 

Syntactical variable: §08. 

Syntax: §08. 

t: §05, §10. 

/: §11 (Dl). §28, §50(021). 

Tautologous: 46.6(1). 

Tautology: §15, §19, §23. 

Tautology-, laws of: n. 186. 

Term: n. 4. 

Term: 39.10. 

Ternary form: §02. 

Ternary relation: n. 78. 

Theorem: §07, §10. 

Theorem schema: §33. 

Theoretical syntax: §08. 

Theoretische Logik: n. 125. 

Theory of deduction: n. 252. 

Theory of implication: n. 224. 

Thing: n. 9, n. 148. 

Transitive law of equality: §48, f522. 

Transitive law of (material) equiv¬ 

alence: |157. 

Transitive law of (material) im¬ 

plication: 12.4, f 141. 

Triple negation, law of: 26.13. 

True for (a system of values of the 

free variables): §04. 

True (proposition): §04. 

True (sentence): §04, §09, n. 172, 

43.2, n. 512. 

Truth (i.e., the truth-value truth): 

§04. 

Truth (in Tarski’s sense): §09, 

n. 142, n. 143. n. 407, n. 512. 

Truth-function: §05, n. 92. 

Truth-functional biconditional: §05. 

Truth-functional conditional: §05. 

Truth-functional constituent: §46. 

Truth-functional variable: §28. 

Truth-table: §15, §24. 

Truth-table decision procedure: §15, 

§29. 

Truth-value: §04, §19. 

Type: n. 578. 

Type-class: n. 578. 

Types, theory of: n. 87, n. 148. 

Typical ambiguity: n. 149, n. 585. 

Unary: n. 29. 

Undefined terms: §07. 

Uniform continuity: n. 102. 

Universal cljss: §04. 

Universal closure: §43, §54, §55. 

Universal quantifier: §06. 

Univocacy: §01. 

Unsound interpretation: §07. 

Unsound language: §07. 

Use of a word (distinguished from 

mention): §08. 

Use P: §31, n. 324. 

Vacuous occurrence of a quantifier: 

§39. 

Valid: §43, n. 407, 43.2, §53. §54. 

Valid in a domain: §43, §54. 

Valid with respect to a system of 

domains: §54. 

Validity in Flh: 43.2. 

Validity in the extended proposition¬ 

al calculus: §53. 

Validity in the pure functional cal¬ 

culus of first order: §43. 

Validity in the pure functional cal¬ 

culus of second order: §54. 

Valuation: 45.4. 

Value for (a model): §55. 

Value for a null class of variables: 

§10, n. 312. 
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Value in the syntactical sense: n. 143, 

§43. 

Value of a constant: §10, n. 312. 

Value of a form: §02, n. 312. 

Value of a function: §03. 

Value of a variable: §02, §43. 

Value of a wff: §15, §23, §43. 

Value of a wff of Px: §15. 

Value of a wff of P2: §23. 

Variable: §02, n. 24, n. 26, n. 31, 

n. 112, n. 117. 

Variable quantity: n. 62. 

Variant of a wff: §13, §36. 

Variant proof: §13. 

Vicious-circle principle: §58, n. 574. 

(w) : §56. 

Weak law of excluded middle: 

26.13. 

Weaker than: §57. 

Weight of a functional variable: 

46.11(2). 

Well-formed formula: §07, n. 310. 

Well-ordering: 55.22. 

Well-ordering of the individuals, 

axiom of: §56. 

wf: §10. 

wf part: n. 200. 

wff: §10. 

wffs: §10. 

(x) : §06, §30(D13). 

Z0: §55. 

Zx: §55. 

r-. **452, §54. 

ri-B: §45, §54. 

A*: §03, §06. 

77: §30, §55. 

X: §30, §55. 

0: 55.14. 

0-ary connective: §24. 

0-ary-n-ary operator: n. 99. 

1: 55.14. 

= : n. 43. 

= : §48(D18), §52(D22), §55, §58. 

=a: n. 580. 

=3: n. 580. 

*: §48(D19), §52(D23). 

=f=2: n. 580. 

=#3: n. 580. 

f—: n. 65. 

h n. 65, §12, §13, §30, §36, n. 343. 

~: §05, §11 (D2), §20, §30. 

v: §05, §11 (D4). 

v: §05, n. 169, §11 (D10). 

c: §05, §11 (D8). 

4:: §05, §11 (D3). 

=>: §05, §10, §20, §30. 

=V §28. 

=>x: §06, §30(D15). 

=>„: §06, §30(D15). 

§05, §11 (D9). 

= : §05, §11 (D6). 

=x: §06, §30(D16). 

m„: §06, §30(D16). 

4=: §05, §11 (D7). 

|: §05, §11 (Dll), n. 207. 

I*: §30(D17). 

§06, §11, n. 165. 

(ix): §06, n. 546. 

V: §06, §30. 

3: §06, §30(D14). 

§11- 

§29, 39.10. 

f: §32 (proof of **323). 

§32(proof of **323). 

(col). (oo2), (co3). (co4), (co6): 

§57. 

(o>6), (oo7), (co8), (oo9), (colO): 

57.2. 
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Errata 

On page 66, in line 12, read: “Else there will be simple elementary true 
propositions . . 

On page 142 it should have been pointed out that W'ajsberg’s paper, cited 

in footnote 211, contains an error that is not easily set right. However, the 

metatheorem that is stated in the next-to-last paragraph of the text on page 

142, and a similar metatheorem for the formulation F“ of intuitionistic func¬ 

tional calculus of first order, were proved by Curry in the Bulletin of the 

American Mathematical Society, vol. 45 (1939), pp. 288-293, and the proof 

is reproduced by Kleene in Introduction to Metamathematics.—Since Curry’s 

proof depends on Gentzen’s Hauptsatz for LJ, the remark should be made 

that it is not the use of Gentzen’s Sequenzen but the Hauptsatz itself that is 

essential, as the Sequenzen can of course be eliminated by the definitions on 

page 165 (with m= 1 for the intuitionistic case), and the Hauptsatz therefore 

proved in a form that is directly applicable to formulations of the ordinary 

kind without Sequenzen (compare Curry, loc. cit., and Kurt Schutte in the 
Mathematische Annalen, vol. 122 (1950), pp. 47-65). 

On page 150, the parenthetic explanation at the end of the statement of the 

metatheorem **272 must be changed to read as follows: “(i.e., every applica¬ 

tion of the rule of substitution is one of a chain of successive substitutions 
that are applied to one of the axioms of P2).” 

On page 171, add after line 2: “These substitution notations will be used 

not only when r, I\, I\,..Tn are well-formed formulas, but when they 

are ormulas consisting of variables or constants standing alone, and even 

possi ly m other cases also. The condition that A shall be well-formed must 
e retained, at least in the case of the dotted S.” 

On page 257, in connection with case X of the decision problem, it should 

rliff6 ^ ^°.*ntet* out l^at *bis case covers only a finite number of wffs that 
»• Cr ^nv,se by alphabetic changes of bound variable or transforma- 

frn S °1 • matrix by Pr°P°sitional calculus or both. This detracts somewhat 
is at C m*<jrest {be case, as the decision problem of a finite class of wffs 

ways so vable in principle, by the trivial procedure of listing the valid 
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and invalid formulas in the class. But in case X the finite number is large, 

and there is still an interest in finding a practicable decision procedure. 

On page 269, after the word “which” at the end of line 11, insert the words 

“the premisses are inconsistent, as well as cases in which”; for although exer¬ 

cise 46.22 is deliberately stated in such a way that some additional valid in¬ 

ferences will be found, beyond the traditional categorical syllogisms, there is 

no point in including the inferences which are valid only because the premisses 

are inconsistent. 

On page 299, replace the words “those of Fn,” at the beginning of line 20, 

by “all variants of the axioms of Fi” 

On page 335, the definition which is given in 55.14 requires the further 

condition that there is either at least one 0 or at least one 1 among the signs 

a„ a,, . . . , a„. For otherwise f(a„ a,, . . . , an) is already a wff, and may not 

without confusion be used to abbreviate another wff. 

On page 352, in the seventh line of footnote 581, insert the word “are” 

before “added.” 
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